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Abstract

In this paper we consider infinite electrical networks. Many of the results from
finite electrical networks carry over in similar forms. In the infinite case, we show
that the space of finite power voltages and current functions both form Hilbert
spaces, which gives us powerful tools for analysis. Minimal power solutions
come to the forefront of importance on these networks and in general we get
minimal boundary-to-boundary maps. In a similar fashion to the finite case, we
show how to recover a large class of infinite networks called “critical half-planar
networks”.
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Chapter 1

Forward Problems

1.1 Introduction

In this paper we develop the theory of infinite electrical networks. We first give
some basic results about existence and uniqueness for boundary conditions in
Lp for various p. It turns out that Lp spaces aren’t the most natural spaces
to work with for infinite graphs. Instead, we look at the space of functions of
finite power, both for voltage functions and current functions. It turns out these
are Hilbert spaces, which gives us some nice results. It turns out that certain
subspaces of the finite power voltage functions and the finite power current
functions are dual to each other in a natural sense. Perhaps most importantly,
we prove various theorems relating to the existence of Dirchlet to Neumann
maps and Neumann to Dirichlet maps and in what sense these maps exist for
infinite graphs.

1.2 Preliminaries and Definitions

Firstly, we need some basic information about infinite graphs.

Definition 1.2.1. We call a graph topologically connected if there are no
two subgraphs A and B such that A ∪B = G and A ∩B = ∅.

Definition 1.2.2. We call a graph finitely connected if every two vertices in
the graph can be connected by a finite path.

Lemma 1.2.3. A graph G is topologically connected iff it is finitely connected.

Proof. If G is finitely connected then obviously it is topologically connected.
Now suppose that G is topologically connected but not finitely connected and
let v and w be vertices that can’t be connected with a finite path. We will define
a subgraph Gn(v). A vertex a is in Gn(v) iff there is a path from v to a in G
such that is of length n or less. An edge ab ∈ Gn iff a, b ∈ Gn and ab ∈ G. We
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will now define the graph

C(v) =
⋃
n∈N

Gn(v)

which we will call the maximal component containing C(v). Now notice that
{C(v) : v ∈ G} is just the collection of maximal finitely connected components
of G, so if C(v) 6= C(w) (which occurs iff there is not a finite path from v to w)
then C(v) ∩ C(w) = ∅. Define the graphs

A = C(v) and B =
⋃

u∈{G:C(u) 6=C(v)}

C(u)

and note that A∩B = ∅ but A∪B = G so G is not topologically connected.

Lemma 1.2.4. If G is a finitely connected infinite graph with finite valence at
each vertex, then G has countably many vertices and (at most) countably many
edges.

Proof. Using the above notation, we have just seen that if v ∈ G is any vertex,
then G = C(v) =

⋃
n∈NGn(v). Thus if we can show that each Gn(v) is finite

we will be done. The rest of the proof will be by induction. Since every vertex
has finite valence, if w is any vertex in G, we know that G1(w) is finite. Now
suppose that Gn(v) is finite for some n ≥ 1. Then we have that

Gn+1(v) =
⋃

w∈Gn(v)

G1(w)

which is a finite union of finite sets and is thus finite. By induction each Gn(v)
is finite so the union is countable.

Now we need a definition of an infinite electrical network. We do this much
the same as the finite case.

Definition 1.2.5. Let G = (∂G, intG,E) be an infinite graph divided into
boundary and interior vertices ∂G and intG. We will call the pair Γ = (G, γ)
an infinite electrical network if the following conditions are satisfied

1. G is finitely connected,

2. each vertex of G has finite valence (i.e. finitely many edges connected to
it),

3. γ is a function from E (the edges of the graph) to R+ (strictly positive
reals).
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1.3 Naive Approaches to Infinite Graphs

In this section we develop some of the theory for Lp voltage functions, which
is sort of the most naive route to approach this problem. We have some useful
results, which we present for completeness, but the theory of Lp spaces in this
context turns out to be not as robust as the theory of finite power voltages,
which we will discuss later.

Definition 1.3.1. The spaces Lp(G) and Lp(E) are as follows

1. For 1 ≤ p < ∞ Lp(G) is the space of real valued vertex functions u such
that

∑
v∈V (G) |u(v)|p <∞

2. L∞(G) is the space of bounded real valued vertex functions.

3. Lp(E) (resp. L∞(E)) is the space of positive valued conductivity functions
γ such that

∑
e∈E γ

p <∞ (resp. is bounded).

We recall that from Minkowski’s inequality that these spaces are actually
R-vector spaces.

We note that since we assumed that vertices have finite valence, given an
electrical network Γ = (G, γ) and a real valued function u : G → R and a, we
can make sense of the current at each vertex. In fact, this lets us define will
define the operator K : RG → RG as

(Ku)(v) =
∑
v′∼v

(v − v′)γvv′ .

Thus a function u is called γ harmonic if (Ku)(v) = 0 for v ∈ intG.

1.3.1 Results about L∞(G)

We can now state a result about existence.

Theorem 1.3.2. Let Γ be an infinite electrical network. Let φ ∈ L∞(∂G).
Then there exists a (not necessarily unique) function u ∈ L∞(G) such that
u|∂G = φ and u is γ-harmonic on intG. Furthermore, we have that ‖u‖L∞(G) =
‖φ‖L∞(∂G).

Proof. Arbitrarily pick a boundary vertex v0. We can define the distance be-
tween two vertices v and v′ as the minimum path length between v and v′. Let
Gn denote the subgraph of G consisting of all vertices v with distance less than
or equal to n from v0 and let an edge be between two vertices in Gn there is a
corresponding edge in G. We can make Gn into an electrical network by setting
∂Gn = (∂G∩Gn)∪ (Gn \Gn−1) and defining a conductivity function on Gn to
be just the restriction of γ onto Gn. We note that Gn is a finite graph. Define
the function φn : ∂Gn → R as φn(v) = φ(v) if v ∈ ∂G∩Gn and set φn(v) = 0 if
v ∈ ∂Gn \ ∂G. Using basic theory, the Dirichlet problem has a unique solution
on finite graphs, so there is a function un : Gn → R such that un|∂Gn

= φn and
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un is γ harmonic on intGn. We can extend un to all of G by setting u to be
zero outside of Gn. We note that ||un||L∞(G) ≤ ||φ||L∞(G) and hence {un} is
a pointwise bounded sequence. Now order the vertices of G arbitrarily as the
sequence {vi}. Since un is bounded, we can find a subsequence uk1

n
such that

uk1
n
(v1) converges. Now find a subsequence {uk2

n
} of this last sequence such that

uk2
n
(v2) converges. Repeat this process to get a chain of subsequences such that

ukjn(vj) converges. Now consider the diagonal subsequence ukjj
. This converges

pointwise at every vertex, say to a function u. Now, since ukjj
is γ-harmonic on

intG` for all ` ≤ kj and every interior vertex of G is contained in Gn for all
n sufficiently large, we know that u will be γ-harmonic on G, and furthermore
will obviously take the right boundary values. Finally, we note that since u has
the right boundary values ‖u‖L∞(G) ≥ ‖φ‖L∞(∂G). On the other hand, since
||un||L∞(G) ≤ ||φ||L∞(G), in the limit we will have ||u||L∞(G) ≤ ||φ||L∞(G) and
hence combining the two inequalities yields ||u||L∞(G) ≤ ||φ||L∞(G).

1.3.2 Lack of Uniqueness

Unfortunately, uniqueness is in general not true, even if we only consider bounded
functions. We might hope it would be true, since for instance in the half plane,
harmonic functions that are zero on the real axis are zero on the upper half plane
if we assume that they are bounded. The reader is advised to consider the case
of an infinite string of conductors with a single conductor as a boundary vertex.
By making the conductors have conductance 2n say, we can get γ-harmonic
voltages of 0, 1/2, 3/4, 7/8, . . . which are bounded (the 0 voltage corresponds to
the boundary vertex). Thus there’s no hope of having uniqueness in this case
without restrictions on γ. At the present time there are no known restrictions
on γ to give uniqueness in the case of u ∈ L∞.

1.3.3 More on Lp(G) spaces

It turns out that uniqueness is pretty easy easy in if we assume all of our
functions are in Lp so that things go to zero as we move “far” into the graph,
but the existence is much harder and we don’t have any useful results. We
will assume that the reader is somewhat familiar with measure spaces, and all
measures will be assumed to be positive.

1.3.4 Some Real Analysis

Here we develop a bit of machinery and terminology. We note that by Lemma
1.2.4, we can make G into a σ-finite measure space by simply putting the count-
ing measure with weight 1 on each vertex. The set of measurable sets is just
P(V (G)), the set of all subsets of V (G) (the vertices of G). We begin with some
useful but extremely basic remarks.

Lemma 1.3.3. Let (X,M,µ) be a measure space and let E1 ⊆ E2 ⊆ · · · be an
increasing sequence of measurable sets.. If f ∈ Lp(X), then

∫
Ej\Ej−1

|f |p → 0.
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Proof. This is super trivial. Define F1 = E1 and let Fn = En \En−1 for n ≥ 2.
Note that the collection {Fn} is a pairwise disjoint collection of sets and hence,
by the definition of a measure we have that∫

E

|f |p =
∑
j

∫
Fj

|f |p ≤
∫
|f |p <∞

and since each
∫
Fj
|f |p is nonnegative, we have absolute convergence and hence

the summands must tend to zero as j →∞.

Lemma 1.3.4. In the case of G, which we treat as a measure space with the
counting measure, we have that ‖f‖L∞ ≤ ‖f‖Lp .

This is obvious since the weights on each vertex are 1.

1.3.5 First Results for Lp(G)

Theorem 1.3.5 (Maximum Principle for Infinite Graphs). If u is γ-harmonic
on Γ and u ∈ Lp(G), then ‖u‖L∞(G) = ‖u|∂G‖L∞(∂G).

Proof. This is basically just an application of the maximum principle for finite
graphs. Let u ∈ Lp(G) for 1 ≤ p < ∞ and let φ denote u|∂G. Pick a vertex
v ∈ G arbitrarily and let Gn = Gn(v) be the finite electrical network as defined
in our discussion of L∞. Let ∂Gn and intGn also be as defined above. Note
that G1 ⊆ G2 ⊆ · · · is an increasing sequence of sets. Hence by Lemma 1.3.3
we know that ∫

Gn+1\Gn

|u|p → 0.

By Lemma 1.3.4 this implies that ‖u‖L∞(Gn+1\Gn) → 0. Since u is γ-harmonic
on Gn, by the maximum principle for finite graphs, we know that

‖u‖L∞(Gn) ≤ ‖u‖L∞(∂Gn). (1.1)

We recall that by the definition of ∂Gn, we have that

∂Gn+1 = (∂G ∩Gn+1) ∪ (Gn+1 \Gn) ⊆ ∂G ∪ (Gn+1 \Gn).

Hence
‖u‖L∞(∂Gn) ≤ ‖u‖L∞(∂G) + ‖u‖L∞(Gn+1\Gn). (1.2)

Clearly ‖u‖L∞(Gn) → ‖u‖L∞(G). Combining equations (1.1) and (1.2) we get
that

‖u‖L∞(Gn) ≤ ‖u‖L∞(∂G) + ‖u‖L∞(Gn+1\Gn).

Letting n→∞ and using the various results about convergence of various terms
shows that

‖u‖L∞(G) ≤ ‖u‖L∞(∂G).

Since the reverse inequality is trivial, we have equality in the above expression.
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Theorem 1.3.6. Let u1, u2 ∈ Lp(∂G) for 1 ≤ p <∞ and u1|∂G = u2|∂G. Then
u1 = u2.

Proof. Consider the function h = u1 − u2. Note that h is γ-harmonic, h ∈ L2

and h = 0 on ∂G. By the maximum principle for infinite graphs, we know that
‖h‖L∞(G) ≤ ‖h‖L∞(∂G) = 0 and hence h = 0 on G so u1 = u2.

1.3.6 Existence Theorems for Lp(G)

In general, we do not have existence in Lp(G), for example take an infinite series
of conductors with unit conductivity on each edge and a single boundary vertex
(the exact configuration of these conductors is not that important, they can
extend in both directions from the boundary vertex or they can extend in only
one direction). Set voltage 1 on the boundary. Clearly this is in Lp(G) for all
p. But for p 6= ∞, we readily see that no Lp solution will exist, since every
nonconstant γ-harmonic function will be unbounded while the constant voltage
φ = 1 will not be in Lp.

1.4 The Spaces of Finite Power Functions

It turns out the most natural condition to consider for functions on an infinite
graph is the space of voltages that satisfy finite power. This turns out to be
much more natural than Lp spaces since it takes into account the conductivities
better than it seems is possible for Lp spaces. It turns out that there are sort of
two dual finite power spaces. There is the space of finite power voltage functions,
and there is the space of finite power current functions, which are basically be
functionally dual to each other.

1.4.1 Finite Power Voltage Functions

Definition 1.4.1. If Γ is an infinite resistor network and φ is a real valued
vertex function, we define the power of φ to be

P (φ)
def
=
∑
v∈G

∑
v′∼v

γvv′(φ(v)− φ(v′))2.

We note that by convention γvv′ = 0 iff v 6∼ v′ and hence we can write the
above sum as ∑

(v,v′)∈V×V

γvv′(φ(v)− φ(v′))2

or just ∑
V×V

γvv′(φ(v)− φ(v′))2

for brevity.
We note that there is no reason to assume that P (φ) is finite for a particular

φ or even a γ harmonic φ.
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Definition 1.4.2. We define F (Γ) to be the set of real valued vertex functions
on Γ of finite power.

Lemma 1.4.3. F (Γ) is a vector space over R.

Proof. Clearly F (Γ) is closed under multiplication by scalars. That F (Γ) is
closed under addition is just the triangle inequality for L2 since

√
P (f + g) =

(∑
V×V

γvv′(f(v) + g(v)− f(v′)− g(v′)2

)1/2

=

(∑
V×V

(
√
γvv′(f(v)− f(v′)) +

√
γvv′(g(v)− g(v′)

)2
)1/2

≤

(∑
V×V

(
√
γvv′(f(v)− f(v′))2

)1/2

+

(∑
V×V

(
√
γvv′(g(v)− g(v′))2

)1/2

=
√
P (f) +

√
P (g).

It turns out that we can in some sense solve the Dirichlet problem in F (Γ),
but that F (Γ) isn’t quite the right space to look at. We note that adding a
constant to every vertex does not change the power, and that the constant
function has 0 power, this leads us to make the following definition:

Definition 1.4.4. We define the space Z(Γ) to be F (Γ)/span{1} where 1 de-
notes the constant function 1.

We note that the power function is well defined on Z(Γ). We recall that
power was almost a norm on F (Γ) but on Z(Γ) it turns out to be a norm:

Theorem 1.4.5. Z(Γ) is a Hilbert space with inner product given by

(f, g) =
∑
v,v′

γvv′(f(v)− f(v′))(g(v)− g(v′)).

Proof. The only claim that requires justification is that Z(Γ) with the inner
product above is Cauchy complete. We use the standard theorem that says
a normed vector space is complete iff

∑
N ‖fn‖ < ∞ implies

∑
N fn exists as

a limit in the norm topology (Theorem 5.1 of Folland). Thus suppose that∑
N
√
P (fn) <∞. We first claim that we get pointwise convergence in a certain

sense. Let v0 be an arbitrary vertex in G and pick representatives of fn in F (Γ)
such that fn(v0) = 0. We first claim that

∑
n |fn(v)| < ∞ for all v ∈ G. This

part of the proof will be by induction. Suppose the claim holds for all vertices
of distance k or less from v0 and consider a vertex vk+1 of distance exactly k+1.
Let v0v1 . . . vkvk+1 be a path from v0 to vk+1. So by assumption∑

n∈N
|fn(vk+1)| <∞. (1.3)

9



Since
∑
n∈N

√
P (fn) <∞, we in particular have that

√
γvkvk+1

|fn(vk)− fn(vk+1)| ≤
√
P (fn)

and hence ∑
n∈N
|fn(vk)− fn(vk+1)| <∞.

Applying the triangle inequality shows that

N∑
n=1

|fn(vk+1)| −
∑
n=1

|fn(vk)| ≤
∞∑
n=1

|fn(vk)− fn(vk+1)|.

Letting N → ∞ and using equation (1.3), we see that
∑
n∈N |fn(vk+1)| < ∞.

By induction on k we thus know that
∑
n fn(v) converges absolutely for each

v. Denote the limiting function by f . Firstly, we note that f ∈ F (Γ), since an
application of Fatou’s lemma shows that

√
P (f) =

(∑
V×V

γvv′(f(v)− f(v′))2

)1/2

≤ lim
n→∞

(
P

(
n∑
i=1

fi

))1/2

≤
∞∑
i=1

√
P (fi).

To see that
∑N
n=1 fn converges to f in the power norm, we will apply the

dominated convergence theorem. Firstly, let GN (v, v′) =
∑N
i=1 |fn(v)− fn(v′)|

and let G(v, v′) =
∑∞
i=1 |fn(v) − fn(v′)|. We note that G is finite everywhere

by the triangle inequality and the fact that
∑
n∈N |fn(v)| < ∞ for all v ∈ G.

We first claim that
∑
v,v′ γvv′(G(v, v′))2 is finite. To see this, note that Gn is

pointwise nondecreasing in n and∑
V×V

γvv′

(
N∑
i=1

|fn(v)− fn(v′)|

)2
1/2

≤
N∑
i=1

(∑
V×V

γvv′(fn(v)− fn(v′)2

)1/2

by the triangle inequality. By assumption the latter sum is finite (since it is just∑
N
√
P (fn)) and hence by the Monotone Convergence Theorem, we know that∑

v,v′

γvv′(G(v, v′))2 = lim
n→∞

∑
v,v′

γvv′(Gn(v, v′))2 <∞. (1.4)

We use the estimate (a+ b)2 ≤ 4(a2 + b2) to get that

γvv′

∣∣∣∣∣(
N∑
i=1

fn(v)− fn(v′))−
∞∑
i=1

(fn(v)− fn(v′))

∣∣∣∣∣
2
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≤ 4γvv′

∣∣∣∣∣
N∑
i=1

(fn(v)− fn(v′))

∣∣∣∣∣
2

+

∣∣∣∣∣
∞∑
i=1

(fn(v)− fn(v′))

∣∣∣∣∣
2

≤ 4γvv′

(
N∑
i=1

|fn(v)− fn(v′)|

)2

+

( ∞∑
i=1

|fn(v)− fn(v′)|

)2

≤ 8γvv′G(v, v′)2

which is in L1(V × V ) by the estimate on in (1.4). Thus by the dominated
convergence theorem, we know that

P

(
N∑
i=1

fi −
∞∑
i=1

f

)
=
∑
V×V

γvv′

∣∣∣∣∣(
N∑
i=1

fn(v)− fn(v′))−
∞∑
i=1

(fn(v)− fn(v′))

∣∣∣∣∣
2

→ 0

since the integrand goes to zero pointwise and is pointwise bounded by 8γvv′G(v, v′)2 ∈
L1(V × V ). Hence Z(Γ) is Cauchy complete.

1.4.2 Interlude about Hilbert Spaces

We now need to present some basic machinery about Hilbert spaces in order to
discuss the space of finite power functions. Many of the existence and unique-
ness theorems that we will state and prove can be proven (and indeed were
initially proven) without using the language of Hilbert spaces, but it turns out
that by introducing some basic machinery, we can simplify many of the proofs
significantly. We begin with a basic result, the proof of which is left as a refer-
ence.

Lemma 1.4.6 (from pg 175 of [3]). If M is a closed subspace of a Hilbert space
H then H = M⊕M⊥, that is each x ∈ H can be uniquely expressed as x = y+z
where y ∈ M and z ∈ M⊥. Moreover, y and z are the unique elements of M
and M⊥ whose distance to x is minimal.

See Folland’s book on Real Analysis for the proof, though the theorem is
extremely standard in the subject of Hilbert spaces

Lemma 1.4.7. If H is a Hilbert space and M is a closed affine subspace, then
there is a unique element x of M such that ‖x‖ is minimal in M .

Proof. The proof follows essentially from the last lemma, in fact only from the
last part of the last lemma. By an affine subspace, we mean that M−y is a linear
subspace for some y ∈ H. By the Lemma, there is a unique x ∈ M − y such
that the distance from x to −y is minimal in M − y. Hence ‖x+ y‖ is minimal
over M − y. But x = z − y where z ∈ M , but ‖x + y‖ = ‖z‖ so clearly ‖z‖ is
minimal over M , as we wanted. Also z is clearly the unique minimizer.
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1.4.3 More on Finite Power Voltage Functions

We are now in a position to state several theorems about existence and unique-
ness of the Dirichlet problem.

Definition 1.4.8. We will denote the set of functions in Z(Γ) which are con-
stant on ∂G by W .

Lemma 1.4.9. The set W is a closed subspace of Z(Γ).

Proof. Obviously W is a subspace, so it is only necessary to show that W
is closed. We note that convergence of a sequence in Z(Γ) implies pointwise
convergence of that sequence (in the sense that we can pick representatives of
the sequence which converge pointwise) as was shown in the proof that Z(Γ)
was Cauchy complete. Hence the property of being constant on the boundary
will be preserved under limits. Hence W is a closed subspace.

Lemma 1.4.10. Let φ ∈ Z(Γ). Then there is a function u ∈ Z(Γ) such that
P (u) is minimum over all functions f ∈ Z(Γ) such that f |∂G = φ|∂G.

Proof. Since φ + W is a closed affine subspace, we apply Lemma 1.4.7 to see
that there is a unique element u of φ + W of minimal norm and furthermore,
we have that u|∂G = φ|∂G. Lastly we note that every function f ∈ Z(Γ) that
agrees with φ on the boundary will be in φ+W , so the statement of the theorem
follows.

We now show that these minimal solutions are γ-harmonic.

Lemma 1.4.11. Suppose that φ ∈ Z(Γ) and that u is of minimal norm in
φ+W . Then u is γ-harmonic on intG.

Proof. If φ is of minimal norm in φ+W then by basic facts about Hilbert Spaces,
since W is a closed subspace of Z(Γ) we have that φ ∈ W⊥. In particular, the
set indicator function χv is in W for all v ∈ intG. Hence (φ, χv) = 0, but a
trivial computation shows that

(φ, χv) = 2
∑
v′∼v

γvv′(φ(v)− φ(v′)),

and since this is zero for all v ∈ intG we know that φ is γ-harmonic.

Theorem 1.4.12. If φ ∈ Z(Γ), then there is a unique element u ∈ Z(Γ) such
that u is minimal in power in φ+W . Furthermore, u is γ-harmonic on intG.

This is literally just a restatement of the previous two theorems. We note
that this is in some ways an existence and uniqueness result for the Dirichlet
problem. But we should note that it is not a solution as we may want. This gives
us a map from valid boundary voltages to a currents coming from a minimal
power solution, but in general, there may be other finite power γ-harmonic
functions with the same boundary voltages but different currents leaving the
boundary.

12



Remark 1.4.13. The Dirichlet problem as it is often formulated in the finite
case is ill posed, even in Z(Γ). In particular, functions in Z(Γ) with the same
boundary voltages may have different current boundary currents.

We should note that we only have a unique energy minimizing solution
and not a unique γ-harmonic solution. In fact, even the assumption of finite
power does not imply that there is a unique finite power γ-harmonic function
with given boundary voltages. An example is an infinite string of conductors in
series, with conductance such that

∑
Z 1/γ2 <∞, and a single boundary vertex

in the middle.

Figure 1.1: The infinite series of conductors discussed in Remark 1.4.13.

Consider the voltage function with constant current 1 flowing constantly the
right on the entire graph. This will give us a finite power voltage function on
the entire graph since the power can be rewritten as

∑
I/γ2 = 1

∑
1/γ2. There

is no current flowing out of the network with this voltage. Note that we can
alter the above example to have constant 1 current flowing to the right, on the
left side of the graph, and then have constant 1 current leaving the boundary
vertex, and no current flowing on the right side of the graph. These are two
γ-harmonic finite power solutions with different boundary currents. This fact
will turn out to be important later: there is not in general a Dirichlet map from
boundary voltages to boundary currents.

1.4.4 Characterizing Minimal Power Solutions

We continue with our discussion of the the minimal power solutions of Z(Γ).
We note that if φ ∈ Z(Γ), by the above theorem, we can find a u ∈ Z(Γ) such
that u has minimal energy and u|∂G = φ|∂G. Thus given a u ∈ Z(Γ) we can
determine whether it has the property of having minimal power with respect to
its boundary conditions, i.e. whether u is the element of least norm in the space
u+W .

Definition 1.4.14. The set of u ∈ Z(Γ) which have minimal power will be
denoted by M(Γ).

Lemma 1.4.15. M(Γ) is a subspace of Z(Γ).

Proof. The proof is remarkably straightforward, and extremely enlightening.
Obviously scaling by constants doesn’t change the property of being minimal.
We note that the minimal power functions correspond exactly to minimal norm
elements in closed affine subspaces of Z(Γ). To see this, note that if f ∈M(Γ)
then f has minimal norm over all elements u in Z(Γ) such that f−u is supported
only in the interior of G (or to be more exact is constant on ∂G). Recall that the
space of functions that are constant on the boundary is denoted by W . Then

13



f is minimal iff f has minimal norm in f + W , but this happens iff f ∈ W⊥.
We note that f, g ∈ M(Γ) iff f, g ∈ W⊥ which implies that f + g ∈ W⊥ which
occurs iff f + g ∈M(Γ) so M(Γ) is a subspace.

As a corollary of the proof of the previous theorem, we have that

Corollary 1.4.16. If W denotes the subspace of Z(Γ) consisting of elements
which are constant on ∂G, then M(Γ) = W⊥. Since W is closed we know that
W⊥ = M(G) is a closed subspace.

1.4.5 Finite Power Current Functions

We will discuss the Neumann problem in much the same way that we discussed
the Dirichlet problem above. We will define a space of finite power current
functions, which will turn out to be a Hilbert space,

Definition 1.4.17. Let φ ∈ F (Γ). Then we define the function I(φ) to be the
real valued directed edge function defined by

I(φ)(vv′) = γvv′(φ(v)− φ(v′)).

Definition 1.4.18. We define a current function I on the directed edges of a
graph to be a function such that I(vv′) = −I(v′v) and such that

∑
v′∼v I(vv′) =

0 for all v ∈ intG.

We note that I(φ) is a current function iff φ is γ-harmonic on intG.

Definition 1.4.19. We recall the definition of the map K : Z(Γ) → RG. We

define analogously the map K̃ : F (E)→ RG define by

K̃(I)(v) =
∑
v′∼v

I(vv′).

Definition 1.4.20. We define the power of a current function I to be∑
vv′:γvv′ 6=0

I(vv′)2

γvv′
.

Definition 1.4.21. We define the space of finite power current F (E) to the be
set of current functions with finite power.

Lemma 1.4.22. F (E) is a Hilbert space with inner product

(I1, I2) =
∑

v,v′:γv,v′ 6=0

I1(vv′)I2(vv′)

γv,v′
.

14



Proof. As with the case of voltages, the only point worth mentioning is Cauchy
completeness. The proof of this fact is similar to the proof of Cauchy complete-
ness of L2 for a general measure space. We observe that if we let d# be the
counting measure on V × V , then the above inner product is exactly the inner
product on L2(V × V, µ) where dµ = γ(v, v′)d#. Hence to show that F (E) is a
Cauchy complete, it is sufficient to show that F (E) is closed in L2(V ×V, µ). If

In is Cauchy, it will converge to a function Ĩ ∈ L2(V × V, µ). To show that the
limiting function is a current function, we note that in general, convergence in
Lp for 1 ≤ p < ∞ for any counting measure implies pointwise convergence on
sets of positive measure. Hence we will have that In → Ĩ pointwise, which will
imply that Ĩ(vv′) = Ĩ(v′v) and that the sum of currents coming into a vertex
will be zero since it is zero for each In. Hence F (E) is a closed subset of a
Cauchy complete space and is hence Cauchy complete.

Theorem 1.4.23. Let i0 ∈ F (E). Then there is a unique current function i

such that P (i) is minimal over all functions i′ ∈ F (E) such that K̃i′ = K̃i0.
Furthermore, there is a unique u ∈ Z(Γ) such that I(u) = i.

Proof. Let Y denote the space of finite power current functions i such that
K̃i = 0. We note that i is a closed subspace since convergence in F (E) implies
pointwise convergence since the topology on F (E) is the same as the subspace
topology given from the topology on L2(V ×V ) under the appropriate counting
measure and convergence in Lp under a counting measure (for 1 ≤ p < ∞)
implies pointwise convergence since each point has positive measure. But as in
the case of Z(Γ), by 1.4.7 we know that there is always a unique element of
i0 + Y of minimal norm. Call this element i.

Now we just need to establish that there is a unique u ∈ Z(Γ) such that
I(u) = I. Uniqueness is fairly straightforward, since if u1 and u2 both satisfy
I(u1) = I(u2) then I(u1−u2) = 0 and hence there is no current flowing anywhere
for the voltage function u1 − u2 and hence u1 − u2 is constant and hence equal
to zero in Z(Γ). The existence of such a u is harder, but not overly difficult.
It relies on an argument made by Will Johnson. It is sufficient to show that if
the sum of I(ij)2/γij around any loop in G is zero, then such a u will exist.
This is clear since if the sum around every loop is zero, then we can just define
u by arbitrarily setting u to be zero at a single vertex, and then defining u
by extending u to neighboring vertices by defining it to so that the voltage
difference yields the desired current. This is well defined if the sum around a
loop of the necessary voltage differences is zero.

Let C = v0v1v2 · · · vnv0 be a loop in G. Let iC have current have current
one along each edge vkvk+1 and have −1 along each edge vkvk−1 (where say

v−1 = vn and vn+1 = v0). We note that K̃iC = 0 and hence iC ∈ Y . But
by 1.4.7 we know that i ∈ Y ⊥ and hence (i, iC) = 0. But, we just observe by
explicit computation that

(i, iC) = 2

n∑
j=0

i(vivj+1)

γvjvj+1

15



which must be zero, exactly as we needed. Hence there is a φ such that I(φ) = i.
We should also note that clearly φ ∈ Z(Γ) since P (φ) = P (i) by definition.

This formulation of the Neumann problem is somewhat different than in the
finite graph case. We should note that something happens which is unexpected:

Remark 1.4.24. There is not a well defined Neumann-to-Dirichlet map in
general, even if we restrict ourselves to functions in Z(Γ).

In particular, given boundary currents on a network G, even if we know that
they came from a voltage function in Z(Γ), we cannot say that they came from
a unique function. For example, take a countably infinitely many conductors
in series as in Figure 1.1 and suppose that the conductivities satsify

∑
i

1
γ <∞

(for instance take γn = n2). Take a vertex and arbitrarily set the voltage u to
zero. Assume that the current is constant on the entire graph, say 1 to the right.
Clearly with this information we can extend u γ-harmonically to the rest of the

graph, but we see that the power on the graph is
∑

Z
I2

γ = 12
∑

1
γ <∞ ! If we

set any subset of the graph to be boundary vertices, we note that the current
leaving the network is 0 at each boundary vertex, even though the solution is
not constant.

1.4.6 Minimal Currents

Just like in the case of minimal power voltage functions in Z(Γ), we can consider
minimal current functions, and we will analogous results.

Definition 1.4.25. Let M(E) denote the set of minimal current functions in
F (E).

Lemma 1.4.26. M(E) is a closed subspace of F (E). Moreover, if Y denotes

the set of all current functions i in F (E) with K̃i = 0, then M(E) is exactly
Y ⊥.

Proof. As in the case of voltage functions, we note that i is minimal iff i has
minimal norm over the set of current functions i′ such that K̃i′ = K̃I. The
set of such functions is exactly i+ Y . Hence i has minimal norm over i+ Y iff
i ∈ Y ⊥.

1.4.7 Duality of Current and Voltages

We now have two interesting spaces, namely the space of minimal voltage func-
tions M(Γ), and the space of minimal current functions M(E). Since all count-
ably infinite dimensional Hilbert spaces are isometrically isomorphic, it is too
easy to say that M(Γ) ∼= M(E) since that is trivially true. They turn out to not
be naturally isomorphic under the obvious maps, so instead, we try to see how
close these spaces are isomorphic in the natural way. We need some definitions.
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Definition 1.4.27. Let H(Γ) denote the subspace of Z(Γ) of functions which
are γ-harmonic on intG. Similarly let L(E) denote the subspace of F (E) consist-
ing of current functions such that the sum of the necessary potential differences
in any loop is zero.

We note that M(Γ) ⊆ H(Γ) and M(E) ⊆ L(E). We have natural functions
between L(E) and H(Γ).

Definition 1.4.28. Let I : H(Γ) → L(E) denote the function which takes
a γ-harmonic function in Z(Γ) and maps it to the natural current function
induced. Similarly let Φ : L(E) → H(Γ) denote the function which takes a
current function with necessary loop sums that are zero and maps it to the
unique voltage function that satisfies those currents.

Lemma 1.4.29. Both I and Φ are bijective linear functions. Furthermore both
are isometries. Lastly I = Φ−1.

Proof. The fact that they are isometries is trivial. To see that I and Φ are
bijective, we just observe that given a function in I ∈ L(E), we have already
shown that there is a unique function u ∈ Z(Γ) such that I(u) = I, and hence
we clearly have that IΦ = id|L(E) and ΦI = id|H(Γ) so the claim follows.

Hence we have the following diagram illustrating the relationship between
the respective sets concerning voltages and currents:

Z(Γ) F (E)
∪ ∪

H(Γ)
I=Φ−1

←→ L(E)
∪ ∪

M(Γ) M(E)

A natural conjecture would be that I and Φ map minimal elements to
minimal elements. This is unfortunately not true. A counterexample to Φ
mapping minimal currents to minimal voltages is again offered by an infinite
series of conductors with a single boundary vertex in the middle. There will be
a minimal current such that the current leaving the system is nonzero, while
any minimal voltage will just be constant, and hence there are strictly more
minimal currents in this example than minimal voltages. We will later see that
I cannot in general map minimal voltages to minimal currents.

We should note that in general, we can imagine evaluating I at voltages
which are not in H(Γ), but it wouldn’t immediately be obvious how to evaluate
Φ on edge functions which are not in L(E). We will use Hilbert space duality to
get around this problem. We remark that there is a sort of symmetry between
current and voltage, which leads us to define the following function.

Definition 1.4.30. We will define the pseudoinner product G : Z(Γ)×F (E)→
R defined by

G(u, i) =
∑
V×V

(u(v)− u(v′))i(vv′).
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We note that G(u, i) is always finite since by Cauchy Schwarz we know that∑
V×V

|(u(v)− u(v′))i(vv′)| =
∑
V×V

√
γvv′ |(u(v)− u(v′))| |i(vv

′)|
√
γvv′

≤

(∑
V×V

γvv′(u(v)− u(v′))2

)1/2(∑
V×V

|i(vv′)|2

γvv′

)1/2

which the understanding that the integrand is 0 whenever v′ 6∼ v. The above
computation shows immediately that

|G(u, i)| ≤ ‖u‖Z(Γ)‖i‖L(E). (1.5)

We now recall the Riesz Representation theorem:

Theorem 1.4.31. Let H be a Hilbert space and let f : H → R be a bounded
linear functional. Then there is a unique yf ∈ H such that f(x) = (yf , x) for
all x ∈ H. Furthermore, ‖f‖sup = ‖yf‖.

Thus we have the following result:

Lemma 1.4.32. The function G defined above yields well defined, bounded
linear functions Ĩ and Φ̃ defined on Z(Γ) and F (E) respectively such that

Ĩ|H(Γ) = I and similarly Φ̃L(E) = Φ.

Proof. For a fixed u ∈ Z(Γ), set fu(i) = G(u, i). By (1.5) we know that fu is
a bounded linear functional and hence by the Riesz Representation theorem we
know that there is a unique iu ∈ F (E) such that fu(i) = (iu, i). Define Ĩ(u) =
iu. This is a well defined function by the uniqueness of the Riesz Representation
theorem. Also, from the uniqueness of the Riesz representation theorem we see
that Ĩ is linear. By the bound given by the Riesz representation theorem we
know that ‖Ĩ‖ ≤ 1. If u ∈ H(Γ), then we just observe that G(u, i) = (Iu, i)F (E)

and hence by uniqueness of the Riesz Representation theorem we know that
Iu = iu = Ĩ(u). The exact same analysis works for Φ̃.

Lemma 1.4.33. We have that ker Ĩ ⊆W . Similarly we have that ker Φ̃ ⊆ Y .

Proof. We can see this fairly easily just by looking at appropriate test functions.
Suppose that u ∈ ker Ĩ, i.e. G(u, i) = 0 for all i ∈ F (E). Let v1 and vn be
boundary vertices such that C = v1v2 · · · vn is a path from v1 to vn. We define
the current function IC to be just 1 along each edge vjvj+1 and to be −1 along
each edge vivi−1 and we observe that IC is clearly in F (E) since the sum of
the currents at any interior vertex is 0 and IC is finitely supported. Hence
G(u, IC) = 0. But we observe that

0 = G(u, IC) = 2(u(v0)− u(vn))

and hence u is constant on all boundary vertices and hence in W .

18



Now for the other claim, suppose that i ∈ ker Φ̃, i.e. that G(u, i) = 0 for all
u ∈ Z(Γ). The claim is also not that difficult. Just consider the set indicator
function u = χ{v} where v is any vertex. We simply note that

0 = G(u, i) = 2
∑
v∼v′

u(v)− u(v′)

and hence i has zero current sums. This holds on the boundary, and hence
i ∈ Y .

We have a stronger result for ker Ĩ and ker Φ̃.

Lemma 1.4.34. We have that ker Ĩ ⊆ H(Γ)⊥ and similarly ker Φ̃ ⊆ L(E)⊥.

Proof. We will show only the first claim since the argument for the second is
identical. Let φ ∈ ker Ĩ. Then G(φ, i) = 0 for all i ∈ F (E). A fortiori we know
that G(φ, i) = 0 for i ∈ L(E). Using the fact that I is a bijection from L(E)
to H(Γ), we have that if u ∈ H(Γ) then 0 = G(φ, Iu) = (φ, u)Z(Γ). Since this

holds for all u ∈ H(Γ), we have that φ ∈ H(Γ)⊥.

Lemma 1.4.35. The map Ĩ maps H(Γ)⊥ into L(E)⊥ and similarly Φ̃ maps
L(E)⊥ in H(Γ)⊥.

Proof. If φ ∈ H(Γ)⊥ then (φ, u)Z(Γ) = 0 for all u ∈ H(Γ)⊥. Hence G(φ, Iu) = 0.

Since I maps H(Γ) onto L(E), we know that (Φ̃, φi) = G(φ, i) = 0 for all i ∈
L(E) so Φ̃φ ∈ L(E)⊥. The other claim follows from an identical argument.

Remark 1.4.36. The spaces H(Γ) and L(E) are naturally functionally dual to
each other. We get this by noting that

(u1, u2)Z(Γ) = G(I(u1), u2) = G(u1, I(u2)) = (I(u1), I(u2))F (E)

and similarly

(i1, i2)F (E) = G(Φ(i1), i2) = G(i1,Φ(i2)) = (Φ(i1),Φ(i2))Z(Γ).

1.4.8 Dirichlet to Neumann and Neumann to Dirichlet
maps

In a certain sense we have both Dirichlet-to-Neumann and Neumann-to-Dirichlet
maps. We have maps which send vaild boundary data to the data from unique
minimal functions. We have shown that these unique minimal functions are not
in general the unique finite power γ-harmonic (resp. loop sum zero) voltage or
current functions. Thus we don’t in general have a Dirichlet-to-Neumann map
or a Neumann to Dirichlet map in the traditional sense. We will create several
definitions to make discussing these issues easier:
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Definition 1.4.37. We define the map which sends valid boundary voltages
to the boundary currents of the unique power minimizing function with those
boundary values to be ΛM and similarly we call HM the function which sends
valid boundary currents to the boundary voltages of the unique minimal power
function with those currents. We call these maps the minimal boundary data
maps. We call ΛM the minimal Dirichlet-to-Neumann map and similarly for
HM .

Definition 1.4.38. If there exist maps which take valid boundary data to
unique valid dual boundary data, we call the appropriate maps the harmonic
boundary data maps.

The harmonic boundary data maps represent the tradition Neumann-to-
Dirichlet maps as we have in the finite case. We now prove a theorem that gives
conditions for when we could have such maps.

Theorem 1.4.39. If the function I maps M(Γ) into M(E), then there exists
a well defined harmonic Neumann-to-Dirichlet map on finite power functions.
If the function Φ maps M(E) into M(Γ) then there is a well defined harmonic
Dirichlet-to-Neumann map on finite power functions.

Proof. First suppose that I maps M(Γ) into M(E) and let i0 ∈ L(E) be a
current function that has zero boundary values, i.e. i0 ∈ Y . Then (i, i0) = 0
for all i ∈ M(E) since M(E)⊥ = Y . But then, since I maps M(Γ) into M(E)
and I is a bijection from H(Γ) to L(E), we know that for all u ∈ M(Γ), there
is an i ∈ M(E) such that Φ(i) = u, and hence since Φ is an isometry, we
know that (i, i0) = (u,Φ(i)) = 0. Since this holds for all u ∈ M(Γ) we know
that Φ(i) ∈ W = M(Γ)⊥. But, this means that if a finite power function
has zero current on the boundary, then it has constant voltage, so that the
harmonic Neumann-to-Dirichlet map is well defined. The other direction, i.e.
showing that if Φ maps M(E) into M(Γ) then there is a well defined harmonic
Dirichlet-to-Neumann map on power functions, is proved just by switching the
appropriate symbols.

Corollary 1.4.40. In general, we don’t have that M(Γ) is mapped into M(E)
by I or that M(E) is mapped into M(Γ) by Φ since in general we don’t have
well defined harmonic boundary data maps.

Remark 1.4.41. If G is finite, then the spaces H(Γ) and M(Γ) correspond
because there is a unique solution for given boundary data. Similarly L(E) and
M(E) correspond.

We now analyze ΛM and HM a bit further. Perhaps our discussion is a bit
out of order, but we now define the spaces of relevant boundary information.

Definition 1.4.42. Let Ω(V ) be the vector space of valid boundary voltages
and let Ω(E) denote the vector space of valid boundary currents (as sets we can
view both as subspaces of the rather large space RV ).

The maps ΛM and HM are defined between these spaces.
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1.5 The Space of Finitely Supported Functions

Here we analyze the space of finitely supported functions in both H(Γ) and
L(E).

Definition 1.5.1. We define the space of finitely supported γ-harmonic func-
tions to be Hf (Γ) and the space of finitely supported minimal functions to be
Mf (Γ). Similarly we define the space of finitely supported current loop sum
zero current functions to be Lf (E) and we define the space of finitely supported
minimal current functions to be Mf (E).

Lemma 1.5.2. We have that Hf (Γ) = Mf (Γ) and Lf (E) = Mf (E).

Proof. Obviously Mf (Γ) ⊆ Hf (Γ) and Mf (E) ⊆ Lf (E) by previous theorems.
We now show that Hf (Γ) ⊆ Mf (Γ) Suppose v0 is an arbitrary vertex in G
and suppose that φ is constant outside of Gn(v0). In particular, we know φ is
constant across any edge that is not in Gn(v0). We need to show that φ ∈W⊥,
so let w ∈ W . Considering the network Γn+2 with graph defined by Gn+2(v0)
where the boundary vertices are (Gn+2 \Gn+1)∪ (∂G∩Gn+2). We observe that
φ is γ-harmonic on Gn+2(v0) and hence is in W (Γn+2)⊥. There is a canonical
map rn+2 : Z(Γ) → Z(Γn+2) defined by restricting a function on V (G) to a
function on V (Gn+2) (if u ∈ Z(Γ) denote its restriction to Z(Γn+2) by un+2).
Noting that φ has zero voltage difference across any edge that is not in Gn+1,
so in particular for all the edges in Gn+2 \Gn+1, we note that

(φ,w)Z(Γ) =
∑
V×V

γvv′(φ(v)− φ(v′))(w(v)− w(v′))

=
∑

Gn+1×Gn+1

γvv′(φ(v)− φ(v′))(w(v)− w(v′))

= (φn+1, wn+1)Z(Γn+1).

But we notice that wn+1 is some constant c on ∂G ∩ Gn+1. So we can extend
wn+1 to be the function w′ on Gn+2 by setting w′ to be c on all Gn+2 \Gn+1.
We note then that w′ ∈W (Gn+2) and furthermore

(φ,w)Z(Γ) = (φn+2, w
′)Gn+2

= 0

since φn+2 is γ-harmonic and γ-harmonic functions correspond to minimal func-
tions on finite graphs and w′ ∈ W (Gn+1). Hence φ ∈ W⊥ and hence φ is
minimal.

The proof that Lf (E) ⊆Mf (E) is identical.

Lemma 1.5.3. In general we have that Mf (Γ) is mapped in Mf (E) by I but
that Mf (E) is only mapped into M(Γ) by Φ.

Proof. Clearly Mf (Γ) is mapped into L(E) by I. Furthermore, if u ∈ Mf (Γ)
is finitely supported, then Iu will be finitely supported so Iu ∈ Lf (E). By the
previous theorem we know that Lf (E) = Mf (E).
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Now if i ∈ Mf (E), suppose that i is supported on some Gn(v). Then in
particular, we know that Φi will be constant on each connected component of
Gn+1(v)\Gn(v). We note that Φi is γ-harmonic on intG. Pick a representative
of w such that w is zero on ∂G. If w ∈W then we observe that

(Φi, w) =
∑
V×V

γvv′ [(Φi)(v)− (Φi)(v′)] (w(v)− w(v′))

=
∑

Gn+1×Gn+1

γvv′ [(Φi)(v)− (Φi)(v′)] (w(v)− w(v′))

=
∑

v∈Gn+1

∑
v′∼v

γvv′ [(Φi)(v)− (Φi)(v′)] (w(v)− w(v′)). (1.6)

This expression is a finite sum and is linear in w. Let δv denote the function
which is 1 at v and 0 at all other vertices. We note that equation (1.6) can thus
be rewritten as

∑
ρ∈(intG)∩Gn

w(ρ)
∑

v∈Gn+1

∑
v′∼v

γvv′ [(Φi)(v)− (Φi)(v′)] (δρ(v)− δρ(v′)),

but we notice that for a fixed ρ we have that∑
v∈Gn+1

∑
v′∼v

γvv′ [(Φi)(v)− (Φi)(v′)] (δρ(v)− δρ(v′))

2
∑
v∼ρ

γvρ [(Φi)(v)− (Φi)(v′)]

which is zero since Φi is γ-harmonic on intG and ρ ∈ intG. Hence by linearity
and the finiteness of the sums involved, we know that

(Φi, w) =
∑

ρ∈(intG)∩Gn

w(ρ)
∑

v∈Gn+1

∑
v′∼v

γvv′ [(Φi)(v)− (Φi)(v′)] (δρ(v)−δρ(v′)) = 0

so Φi ∈W⊥ = M(Γ), so we are done.

1.6 Half Planar and Dual Graphs

The natural analogue of circular planar graphs for infinite graphs turns out to
be half planar:

Definition 1.6.1. We say an electrical network Γ is half-planar if Γ is em-
beddable in the upper half plane H ⊆ C such that the boundary vertices are all
on R and the interior vertices are in H (the strict upper half plane).
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1.6.1 Dual Networks

Just as in circular planar graphs we can construct a dual graph in the case
of half planar networks. A-priori the dual graph doesn’t need to have finite
valence, so we will only consider primal graphs such that the dual graph has
finite valence at every vertex. We can form an electrical network Γ† using G†

by setting the conductance across any edge a′b′ in the dual graph to be 1/γab
where ab is the edge in G which crosses a′b′. Now given a φ ∈ H(Γ), then we
wish to form the dual function φ† on the dual function by requiring that if a′b′

is the dual edge crossing ab and a′b′ is the counterclockwise rotation of ab then

φ†(b′)− φ†(a′) = γab(φ(b)− φ(a)).

There is nothing super sophisticated about this, but what we will do instead is
form a current function on Γ† by setting iφ(b′a′) = φ(b)−φ(a). We have that iφ
is γ-harmonic on intG† since φ is a well defined voltage function and summing
iφ at a vertex corresponds to summing voltage differences around a loop, which
obviously yields zero. Similarly iφ has loop sum zero since it clearly has loop
sum zero around any loop which bounds a single cell in the dual graph since
summing around any such loop corresponds to checking that φ is γ-harmonic.
We don’t go into these details too explicitly since they are identical to what
happens in the finite case. We note that if φ ∈ H(Γ) then P (iφ)Γ† = P (φ)Γ and
hence iφ ∈ L(E†). We define the map DΓ by

DΓ : H(Γ)→ L(E†), φ 7→ iφ

and we note that D is a linear isometry. As is easily verified, the composition of
all the functions below in the obvious order is the identity function from H(Γ)
to H(Γ)

H(Γ)
DΓ−→ L(E†)

Φ
Γ†−→ H(Γ†)

D
Γ†−→ L(E)

ΦΓ−→ H(Γ)

is the identity.

1.6.2 Voltage-Covoltage

Let Ω(V ) denote the vector space of valid boundary voltages and let Ω(E)
denote the space of valid boundary currents γ-harmonic functions. We observe
that there is not in general well defined map from these space into any of the
spaces of functions defined on all vertices, or all edges, but we do have a well
defined map from Ω(E) into the set of valid boundary covoltages Θ, and this
map is a bijection, as is easily verified. We will denote the map from Ω(E) by
∂. We leave the details to the reader since they are just as they are in the finite
case (see [4]). Hence we have the following diagram

Ω(V )
ΛM−→ Ω(E)

∂−→
iso

Θ,

and similarly we have
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Θ
∂−1

−→
iso

Ω(E)
HM−→ Ω(V )

Corollary 1.6.2. The minimal boundary data maps ΛM and HM contain
equivalent information to the minimal voltage-covoltage and covoltage-voltage
maps respectively (for half-planar graphs).
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Chapter 2

Inverse Problems

2.1 Introduction

Here we present a proof that we can recover a class of infinite graphs that we will
can critical half planar. Much of the work we present here is a generalization
of work by Will Johnson, and a lot of theory, especially of convex sets of the
medial graph, originated from him. The general strategy of our recovery process
mirrors his process for finite graphs, though many of the proofs for the infinite
case differ significantly from the finite case.

2.2 Preliminaries

2.2.1 Half-Planar Graphs

The class of graphs that we will attempt to recover is a subset of what we will
call the half-planar graphs:

Definition 2.2.1. Let Γ = (∂G, intG,K) be a (possibly infinite) electrical
network. We will say that Γ is half planar if there is an embedding of G
into the closed upper half plane H ⊆ C such that the following conditions are
satisfied:

1. all vertices in ∂G are in R,

2. all vertices in intG are in H = H \ R,

3. V (G) is a discrete set of C,

We can define the dual and medial graphs exactly as we would in the fi-
nite case, but things don’t have to be as well behaved. Unfortunately for the
extension, we do need things to be well behaved, so the class of graphs that we
wish to recover becomes somewhat restrictive. We use as the infinite analogue
of critical circular planar graphs a class of graphs which we call critical half
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planar graphs. Many of the below conditions are probably redundant, but we
list them as assumptions to simplify the below exposition as much as possible.

Definition 2.2.2. A half planar graph G will be called critical with respect
to a particular embedding if, with respect to that embedding, the following
conditions are satisfied:

1. every vertex in the dual graph his finite valence,

2. there are no loops or self intersection of geodesics,

3. two geodesics intersect at at most one point,

4. the geodesics intersect the real axis at exactly two points. This implies
that the geodesics are compact.

5. if K ⊆ C is compact, then {g : g[0, 1] ∩K 6= ∅} is finite.

6. the geodesics can be parametrized by smooth curves with nonvanishing
derivative.

7. each geodesic cell is compact and has as boundary only finitely many
geodesics.

2.2.2 Dirichlet and Neumann Data

We now recall some foundational material about infinite electrical networks, as
was proven in the previous chapter. We encourage the reader to first read that
chapter, since much of the material and terminology will be assumed. Firstly,
in that paper we showed that there were well defined maps (both Dirichlet-to-
Neumann and Neumann-to-Dirichlet) which take valid boundary data to the
dual boundary data of a unique minimal function assuming both boundary
data. We call these maps the minimal boundary data maps. We denote these
maps by ΛM and HM . We still need to be careful though, since we don’t not
have harmonic boundary data maps in the traditional sense. I present several
examples in that chapter. It might be a natural conjecture that for critical
circular planar that we get well defined harmonic boundary data maps, but this
turns out to be false, as we exhibit with the following example.

Example 2.2.3. We examine the “railroad track” graph in Figure 2.1.
We explicitly verify that this graph is critical half planar with the embedding

below in Figure 2.2. Notice that technically this isn’t embedded in a “half plan”
but that doesn’t matter since we can just conformally map the region onto the
half plane.

Now we put conductivities on Γ in the way below and we immediately see
that there is a γ-harmonic vertex function with finite power that is zero on the
boundary and yields nonzero current flowing out of the boundary, so there is no
Dirichlet-to-Neumann map in the traditional sense.
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Figure 2.1: The “infinite railroad” graph examined in Example 2.2.3.

Figure 2.2: The medial and dual graphs of the “infinite railroad” 2.2.3. Note
that primal vertices are notated with a solid circle and dual vertices are notated
with an empty circle.

2.3 Convex and Closed Sets in the Medial Graph.

Here we develop the theory of convex and closed sets of the medial graph for
infinite graphs, which was first developed by Will Johnson in [4] for finite critical
circular planar. As in the finite case, this section will form the technical heart
of the paper. Some results carry immediately over from the finite case, but
most require substantially different proofs. Sometimes if c is a cell in the medial
graph, we will regard c as a subset of C, in which case we will always use c to
refer to the Euclidean interior of the region c. Hopefully no confusion will be
had.

2.3.1 Basic Definitions

Definition 2.3.1. Two cells in a medial graph M are adjacent if they share an
edge. A connected set of cells X is one that is connected through adjacency.

Definition 2.3.2. If X ⊆ M we say that X has a corner at a vertex v in the
medial graph if X contains exactly one of the cells that touch v. We see that
X has an anticorner at v if X contains exactly three of the cells next to v (see
Figure 2.3 )
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Figure 2.3: Corners and anticorners.

Definition 2.3.3. We will say X has a degenerate corner at a vertex v in the
medial graph if X contains two cells which are diagonally opposite each other
across v, but neither of the two cells adjacent to these two cells. See Figure 2.4.

Figure 2.4: Degenerate Corners.

2.3.2 Results from the Jordan Curve Theorem

We assume as part of the embedding that each geodesic g can be parametrized
by a function g : [0, 1]→ H such that g(1) and g(0) but the image of g doesn’t
intersect R at any other points. We form the function g̃ : [0, 1]→ H such that on
[0, 1/2] we define g̃(t) to be g(2t) and on [1/2, 1] we define g̃ to parametrize the
straight line segment from g(1) to g(0) on R. Hence g̃ is a Jordan curve and hence
by the Jordan curve theorem C \ g̃[0, 1] consists of exactly two connected sets,
one which is bounded and one which is unbounded. The bounded component
is clearly a subset of H. Furthermore, it’s really easy to see that if U is the
unbounded component then U ∩ H is also unbounded and connected. If g is
any such geodesic, we will define B(g) to be the cells of the medial graph whose
interiors lie in the bounded component of C \ g̃[0, 1] = H \ g̃[0, 1] and we will

28



define U(g) to be the cells in the medial graph whose cells lie in the unbounded
component of H \ g̃[0, 1]. Clearly U(g) ∪B(g) = M .

We first need some facts given by the piecewise Jordan curve theorem.

Lemma 2.3.4. Let γ : [0, 1] → C be a piecewise continuously differentiable,
closed, simple curve such with only finitely many nonsmooth points and suppose
that γ′+ and γ′− exist at every point where γ is not continuously differentiable.
Suppose further that γ′ is nonzero at the points where γ is differentiable. By
possibly reversing the orientation of γ, we can ensure that iγ′ (rotation coun-
terclockwise) points into the bounded region bounded by γ and −iγ′ (rotation
clockwise) points into the unbounded component. Reversing the orientation of
γ interchanges which vector points into which region.

Proof. I might fill in this proof later, but this is essentially taken out of Gamelin
(page 250).

We now state some alternate versions of the Jordan curve theorem.

Lemma 2.3.5. Let γ : (0, 1) be a simple curve in H which escapes every
compact set K ⊆ C. Then H \ γ(0, 1) consists of exactly two components,
at least one of which is unbounded.

Proof. Note that γ →∞ as t→ 0 and t→ 1. Hence we can extend γ to a simple
closed curve in Ĉ (which is C adjoined with a single point at ∞) by setting
γ̂(0) = γ̂(1) = ∞. The claim follows from the regular Jordan curve theorem

for Ĉ along with the observation that one of the components that Ĉ \ γ̂[0, 1]
will contain the closed lower half plane, and neither component contains∞ and
hence if U1 and U2 are the components of Ĉ \ γ̂[0, 1] then U1 ∩ H and U2 ∩ H
will both be connected.

Lemma 2.3.6. Let x be a cell in the medial graph such that all boundaries of
x are geodesics. Then x is in B(g) for some geodesic g which travels adjacent
to x.

Proof. Suppose to the contrary that x ∈ U(g) for all g which border x. We will
use Lemma 2.3.4 in a strong way. Furthermore, we can assume our geodesics
to be smooth except at the points where they intersect the real axis. Let the
edges of x be (in clockwise order) e1, e2, . . . , en. Let γ0 denote the piecewise
smooth curve parametrizing these edges clockwise (i.e. points in the bounded
region have winding number 1). Let the edge ei of x correspond to geodesic
gi. Let xi,` and xi,r denote the points where gi intersects the real axis, ordered
so that xi,` < xi,r. We now need to consider parametrizations of gi. Let
ĝi : [0, 1]→ C denote the simple closed piecewise smooth curve defined by having
ĝi first parametrize the straight line from xi,` to xi,r and then parametrize the
image of gi starting at xi,r and travelling to xi,`. Since there are ε1, ε2 such
that [xi,` + ε1, xi,r − ε1] × (0, ε2) is nonempty and a subset of B(gi), and that
furthermore, the points in [xi,` + ε1, xi,r − ε1]× (0, ε2) are clearly going to be to
the left of gi in the sense given in Lemma 2.3.4, we know that x is to the left
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of gi (in sense of the previous lemma) iff x ∈ B(gi). Since x is not in B(g), we
know that the points in x are to the right of every geodesic ĝi. We oriented γ0 so
that the interior of x corresponded to being to the right of γ0. Hence we know
that the orientation on γ0 agrees with the orientation of ĝi on the intersection
of their images (on the appropriate edges of x). We note that exactly one of
xi+1,`, xi+1,r is in [xi,`, xi,r] since G has a critical embedding and so there are
no lenses. If we start on a portion of gi+1 which is not in B(g1) (such a portion
exists because of the assumptions on x) then as t increases, since the orientation
of g2 and γ0 agree, we must have that g2 intersects g1 and enters into the interior
of B(g1). Hence xi+1,` ∈ [xi,`, xi,r] and xi+1,` > xi,`. We repeat this to get that
x1,` < x2,` < x3,` < · · · < xn,`. But since our ordering was cyclic (it didn’t
which edge on x we started with), we get that xn,` < x1,` and hence x1,` < x1,`,
which is nonsense. Hence x must be in the bounded region of at least one of
the geodesics which are adjacent to x.

Lemma 2.3.7. Let x be a cell in the medial graph such that x does not border
R. Then x is in U(g) for some g which neighbors x.

Proof. The proof is basically the same as the proof of Lemma 2.3.6. Suppose
that x is in the bounded component bounded by every geodesic that boarders x.
Let γ0 parametrize the boundary of x in a counterclockwise fashion, i.e. x is to
the left of γ. Now let ĝi be defined as in the proof of Lemma 2.3.6. We note that
the orientation of ĝi and γ0 agrees on the intersection of their images for each
i. Since there can be no lenses in the medial graph, and using the assumptions
about orientation, we see that xi+1,r < xi,r for all i. But because of the cyclic
ordering of the edges of x, we see that x1,r < xn,r < xn−1,r < · · · < x1,r, which
is nonsense.

Lemma 2.3.8. Let x be a cell which borders R. Then x ∈ B(g) for at least
one of the geodesics which borders x.

Proof. The proof is almost identical to the proof of Lemma 2.3.6 with a slight
modification. To do this, we will introduce psuedogeodesics, which are just
closed intervals of R, with the convention that if I is a closed interval, then
U(I) = H and B(I) = ∅. We note that if x borders R, then x has a boundary
which consists of psuedogeodesics and geodesics. If gi is a psuedogeodesic, then
we will define ĝi to be the linear parametrization of gi from right to left. It
is easily verified with this definition that the proof from Lemma 2.3.6 goes
through essentially without change. We note that if g is a psuedogeodesic then
x 6∈ B(g) = ∅ and hence x ∈ B(g) for some real geodesic which borders x. We
leave this verification to the reader.

Combining Lemma 2.3.6 and 2.3.8 we get

Corollary 2.3.9. Let x be a cell in the medial graph, then x ∈ B(g) for some
geodesic g which borders x. A-fortiori x ∈ B(g) for some geodesic.
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2.3.3 Theorems about Minimal Numbers of Corners

Definition 2.3.10. We say that X is simply connected if X is connected and
every cell in M \X can be connected to a boundary cell in M \X by a path of
pairwise adjacent cells in M \X

Definition 2.3.11. A geodesic path is a path in the edges of the medial graph.
A simple geodesic path is a path of geodesics which is a path of geodesics
that is either never reaches a vertex twice, or a closed loop (i.e. doesn’t reach a
vertex twice except that the first and last vertices are the same).

Definition 2.3.12. A psuedosimple geodesic path is a geodesic path that
either never reaches a single edge twice, or is a closed loop such that no edges
are reached twice, except that the first and last edges are the same.

Definition 2.3.13. We define the boundary ∂X of a set X ⊆ M as the set of
medial edges which boarder both a cell in X and a cell in M \X.

Definition 2.3.14. If γ is a geodesic path which traverses part of the boundary
of X. Then we say γ is left-inwardly-oriented (with respect to X) if every
cell that is to the left of the edges of γ (with respect to the direction of traversal
of gamma) is in X and every cell to the right is in M \X.

Definition 2.3.15. If γ traverses a portion of ∂X, we define γ to be component-
following if at every degenerate corner of X that γ reaches, γ follows the edge
as shown in Figure 2.5. More precisely, if at every degenerate corner γ will turn
so as to continue along the boundary of the same cell along which it came to
the degenerate corner.

Figure 2.5: A curve γ is component-following if whenever it reaches a degenerate
corner as above, it follows the dotted line.

Lemma 2.3.16. If X ⊆ M then ∂X can be parametrized by an edge disjoint
family of left-inwardly-oriented, complement-following, pseudosimple geodesic
paths or loops.

Proof. We will do this by induction. We will create a family of curves such that
“to the right” corresponds to being in X. Suppose such a (possibly empty) fam-
ily F of pseudosimple, left-inwardly-oriented, and component-following geodesic
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curves has been defined. Let e1 be geodesic edge which is in ∂X but not in any
path. Now just extend e along ∂X in both directions. We now consider different
possibilities of corners that we can reach. If we reach a node where two adjacent
cells are in X but the other two are not, then we only have one choice. If we
reach a corner then we also have no choice. Thus having started at e, we cannot
reach an edge that’s in another curve of F by only passing along geodesics and
turning at corners and anticorners since there have been no choices for any other
path to make. The only case that we need to discuss is if the path reaches a
degenerate corner. In that case, we have up to two choices, as illustrated in
Figure 2.6.

Figure 2.6: The dotted lines represent the possible choices we have to pick at a
degenerate corner.

If any of the the dashed edges in Figure 2.6 is in a curve in F , then we
pick the direction that preserves the component-following property. If any of
the edges entering the node are are already in a path in F , then we know that
exactly two of them must be (since if three were already traversed then the
fourth would have to be as well, contradicting the fact that we got to this node
without traversing edges that are in F), and furthermore, since F is assumed
to have the component-following property, by looking at 2.6, we immediately
see that the edge allowing our curve to have the component-following property
cannot be the one in another path.

The only possibility for running into an edge that has already been defined
is if we meet an edge of the same path we are defining, which is allowable. Also,
these curves are pseudosimple since we assume that we just stop if we are ever
forced to take an edge that we’ve already encountered. They are left-inwardly-
oriented and component-following by our choice of travel at anticorners. Thus
such a family of curves exists as stated.

Lemma 2.3.17. Let X ⊆M be an arbitrary subset which doesn’t contain any
boundary cells of the medial graph. Then X is simply connected iff ∂X can be
parametrized as simple geodesic path. The set X is finite and simply connected
iff ∂X can be parametrized by a single closed simple geodesic path.
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Proof. Let F be an edge disjoint family of left-inwardly-oriented, complement
following psuedosimple geodesics which traverse the entire boundary of X. Let
γ be an arbitrary element of F . We wish to show that γ is simple. Suppose
γ is not simple. Let v be a medial node of self intersection of γ. Note that v
must occur at a degenerate corner of X. We claim that C \ γ must consist of at
least three components. Clearly C \γ must have at least two components, since

it is either a closed curve in C or can be extended to a closed curve on Ĉ by
setting the left and right endpoints to be ∞ ∈ Ĉ, and hence by basic complex
analysis, the winding number is constant in connected components, but the
winding number must change as we cross γ since γ doesn’t repeat any edges.
Suppose that C \ γ consists of exactly two components. Since γ is component-
following, we now that the set of cells in X which are adjacent to an edge in γ
must be connected. Hence the cells in X which are diagonally opposite must
be in the same component. Since each of the cells in M \ X which touch v
cannot be in the same component as the two cells in X since we cross γ to get
to them (and hence the winding number with respect to γ would change), we
know those two cells must be in the same connected component. Let x1 and x2

be arbitrary points in the two cells in M \X which are adjacent to v (with x1

and x2 be difference cells). Since x1 and x2 are in the same component, there is
a path (a continuous 1-1 function from [0, 1] to C) from x1 to x2 which does not
cross γ (and we can even assume that this path is linear in the two cells which
contain x1 and x2). Concatenating this with a “nice” path that goes through
v and starts at x1 and ends at x2 (what “nice” means is left to the reader) as
in Figure 2.7, we get a simple closed curve, and hence we can apply the Jordan
curve theorem to get that there are exactly two regions.

Figure 2.7: The path discussed above.

Clearly exactly one of the two cells in X which is adjacent to v must have
an interior which is entirely in the bounded region and the other one must
have an interior which is entirely contained in the unbounded region. But this
contradicts the fact that the two cells in X which touch v are in the same
component of C \ γ.
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Now we now that all curves in F must be simple. Now we claim that F
must consist of at most one path. Let γ be any of the paths in F . Note that by
the Jordan curve theorem γ will divide H into exactly two connected regions.
Note that exactly one of these regions can contain any cells in the boundary
of the medial graph since X contains no cells of the medial graph and hence
∂M (the boundary cells of the medial graph) must be contained in the single
component. Let Y consist of all of the cells whose interiors are in the other
component. Obviously ∂Y = Im γ. Suppose that X had some boundary edge e
which was not contained in the image of γ. Then we note that either both cells
must be in Y or both cells must be in M \Y . If there is a cell from X in M \Y
then X cannot be connected and if there is a cell from M \X in Y then that
cell clearly cannot be connected to the boundary. We leave it to the reader to
verify these last two assertions, but they are very clear.

For the last statement, if X is finite and simply connected and doesn’t
touch the boundary, then ∂X must be finite, and the only possibility for a
simple geodesic curve to be finite is for it to be closed. If γ is a closed simple
geodesic curve, then the fact that X is simply connected and finite follows from
the Jordan curve theorem. The details are left to the reader.

Corollary 2.3.18. If X is simply connected, then X contains no degenerate
corners.

Lemma 2.3.19 (Lemma 5.4 of [4]). Let X ⊆ M be connected and finite and
suppose X contains no boundary cells of the medial graph. Then X has at least
three corners.

We leave it to the reader to verify that the proof from [4] carries over without
change.

Lemma 2.3.20. Let X by a simply connected set and let g be a geodesic. Then
X ∩B(g) and X ∩ U(g) contain no degenerate corners.

Proof. If X ∩B(g) contained a degenerate corner, then X must too since none
of the other two adjacent cells can be added when we pass to X since none of
the geodesic passing through the vertex at this degenerate corner cannot be g
since otherwise those two cells would not be diagonally adjacent in X ∩ B(g).
The same argument holds for X ∩ U(g).

Lemma 2.3.21. Let X be simply connected and g a geodesic such that B(g)∩X
is nonempty. Then every component of B(g) ∩X has a corner which is also a
corner of X.

Proof. Let C be a component of B(g)∩X. If the segment of g that corresponds
to the boundary of C is not connected, then we can fill in the components of
B(g) \X that touch the intermediate segments of g as shown in Figure 2.8.

This clearly does not reduce the number of corners. Call the resulting region
Ĉ. Clearly Ĉ is finite and doesn’t contain any of the boundary of M . Since Ĉ

34



Figure 2.8: Filling components along g.

is connected we know by Lemma 2.3.19 that Ĉ has at least 3 corners. At most
two of these cells can be adjacent to g since the segment of g that borders Ĉ is
connected. Hence one of these corners must occur inside of B(g) but not along
g. Let c be such a corner. We note that clearly this corner is also a corner of C.
Furthermore, by Lemma 2.3.20, we know that c is a corner of B(g) ∩X. Since
is not adjacent to g, we know that c is not adjacent to any cells in U(g) and
hence c is a corner of X. This holds for every component of B(g) ∩X.

We wish to show the infinite analogue of Lemma 2.3.19. It turns out this
theorem is actually quite difficult to prove. It is relatively straightforward to
show that an infinite simply connected subset which doesn’t contain any bound-
ary cells has at least one corner by just applying Lemma 2.3.19 to a subregion
bounded by a geodesic. It is somewhat more complicated but still relatively
straightforward to find a second corner by traveling in both directions from the
corner we have already found. It turns out that finding the third corner is quite
difficult, and the only proof that I could figure out actually implied that we
have infinitely many corners.

Lemma 2.3.22. Let X ⊆ M be simply connected and infinite and suppose
that X contains no boundary cells. Then X has infinitely many corners.

Proof. Let γ be a geodesic path which traverses the boundary of X. Suppose
that X has no more than k corners (the case k = 0 is allowed). We observe that
γ must be an infinite curve, since otherwise X would be bounded, contradicting
our assumptions. After a certain point in traversing the boundary, γ can only
travel along geodesics or meet anticorners and there must be infinitely many
anticorners, since the geodesics are compact. Let c1, . . . , ck be the corners of
X. Since X is connected there are paths pi of adjacent cells in X from ci to
c1. By Lemma 2.3.9, we know that each cell c in the any of the paths pi (which
includes all ci) is in a region B(gc) for some geodesic gc. Define

R =
⋃

{c:∃pj ,c∈pj}

B(gc)

and note that R is finite and contains all ci for i = 1, . . . , k and also R contains
a path from each ci to each cj . Since R is finite, there can only be finitely many
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geodesics which pass through any portion of the interior of R or pass along the
boundary of R. Since γ must be an infinite path which doesn’t intersect itself
(since otherwise X would be finite), we know that eventually one of the geodesics
which has an edge on γ must not pass through R. Let g be such a geodesic.
We note any component of g which γ traverses must start and end with an
anticorner, since otherwise there would have to be a corner along g, which isn’t
possible since all the corners are contained in R and g doesn’t border any cells
in R. Hence X ∩ B(g) and X ∩ U(g) are both nonempty. Either B(g) or U(g)
must contain all of R since g doesn’t intersect the boundary of R. If R ⊆ U(g)
then we apply Lemma 2.3.21 to show that B(g) ∩ X contains a corner, which
can’t be any of the corners in R since R ⊆ U(g) and hence X has at least k+ 1
corners. Thus suppose that R ⊆ B(g). Now we have to break into cases about
which side of g corresponds to the bounded side with respect to the anticorners.
Note that the anticorners on the segment of g that we are discussing must occur
on the same side of g since otherwise one would be a corner.

Let the “sharp” side denote the side of g where the single cells of the anti-
corner are and let the “smooth” side of g refer to the side where the two adjacent
cells of of the anticorners are. See Figure 2.9 for a picture of what this means.

Figure 2.9: The smooth and sharp sides

If the “sharp” side of g is B(g), then we first claim that B(g) ∩ X must
consist of at least two components. To see this, let x and y be the two “sharp”
cells in the anticorners adjacent to g as in Figure 2.10.

Suppose to the contrary that B(g) ∩ X is connected and hence there is a
path from x to y in B(g) ∩ X. Let z be any cell along g between x and y
which is not in X (such a cell obviously exists since otherwise there wouldn’t
be anticorners. But then there is clearly a loop of cells in X which bound z,
and hence X is not simply connected. This is illustrated in Figure 2.11. Since
all of the corners are connected by paths in R and R ⊆ B(g), we know that
R∩B(g) all of the corners c1, . . . , ck will be contained in a single component of
X ∩B(g). But since there is at least one other component of B(g)∩X, we just
apply Lemma 2.3.21 to get an additional corner in X, which can’t be one of
c1, . . . , ck since it’s in a different component of X ∩B(g) and hence X has k+ 1
corners. Now suppose that the “smooth” side of g is bounded. If B(g) ∩X is
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Figure 2.10: The cells x and y.

not connected, then one of the components must contain all of the corners in R
as before and then another component will contain an extra corner of X. The
last possible case is that B(g)∩X is connected. Let e1 be any geodesic edge on
the boundary of B(g)∩X which is not along g and let e2 be any geodesic edge
along g between the two anticorners x and y. We have the situation in Figure
2.12.

Since X is simply connected, by Lemma 2.3.17 there is a geodesic path α
from e1 to e2. Since α starts at e1 and the entire connected segment from x and
y is part of the boundary of X, we know that α must first travel along g and
then turn at one of the anticorners x and y. If we truncate α at the last edge
before it either travels along g again or enters B(g) and then concatenate this
curve with g to get back to the anticorner that α turns at (see picture), then
we form simple geodesic loop, which must bound a set of cells S in M which
are not in B(g). Furthermore S ∩X is nonempty. We summarize with Figures
2.13 and 2.14.

By filling in holes along g if X ∩S 6= S, we can apply the same argument in
Lemma 2.3.21 to see that S must have a corner that is also a corner of X. Since
this corner is not in B(g), we know that it must be distinct from c1, . . . , ck.
Hence X has k + 1 corners.

Corollary 2.3.23. If X ⊆M is connected and infinite and doesn’t contain any
boundary cells then X has infinitely many corners.

Proof. Just fill in all of the components of M \X except the one that contains
the boundary ∂M , which leaves a simply connected region.
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Figure 2.11: A path in X which surrounds a cell in z 6∈ X.

Figure 2.12: The edges e1 and e2.

2.3.4 Convex and Closed Sets

Definition 2.3.24. We define a half plane to be a set of the form B(g) or U(g)
for some geodesic g.

Definition 2.3.25. A set X ⊆M is closed if it has no anticorners.

Lemma 2.3.26. The intersection of arbitrarily many closed sets is closed.

Proof. Consider an arbitrary collection {Xα}α∈A of closed sets. Let x1, x2, x3, x4

be cells around a vertex v in the medial graph. If vi 6∈
⋂
AXα then vi 6∈ Xα for

some α. Since Xα is closed, another xj 6∈ Xα and hence xj 6∈
⋂
Xα so

⋂
Xα

does not contain an anitcorner and hence is closed.

Lemma 2.3.27. Half planes are closed.

38



Figure 2.13: The curve α. The curve α is represented with a dashed line.

Figure 2.14: The region S. It is the region bounded by the dashed line.

Proof. Obvious.

Corollary 2.3.28. Convex sets are closed.

Proof. This follows from Lemma 2.3.27 and Lemma 2.3.26.

Definition 2.3.29. We define a set X ⊆M to be convex if it is an intersection
halfplanes.

Theorem 2.3.30. Every convex set X of cells is connected.

Proof. The proof caries over without alteration.

Definition 2.3.31. We define the closure of X to be the intersection of all
closed sets which contain X.
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Lemma 2.3.32. The closure of X can also be attained as a countable increasing
chain of sets X = X0 ⊆ X1 ⊆ X2 ⊆ . . . such that each Xi+1 \ Xi consists of
at most one cell in the medial graph, and if x ∈ Xi+1 \Xi then x fits into an
anticorner of Xi.

Proof. Let F the collection of all supersets Y of X such that there is an at most
countable chain of sets X = X0 ⊆ X1 ⊆ X2 ⊆ · · · such that Y =

⋃
iXi and

each Xi differs from Xi−1 by filling in a single corner. Let F be ordered by set
inclusion. We claim that F contains upper bounds. Let Y1 ⊆ Y2 ⊆ · · · all be
sets in F . Then we claim that

⋃
i Yi is in F . This follows essentially from the

proof that N × N is countable. We’ll use a picture to demonstrate what to do,
but the argument is exactly the same as what one would canonically do to show
that N × N was countable. Let X = Xi

0 ⊆ Xi
1 ⊆ Xi

2 ⊆ · · · be an increasing
chain of sets which increases at each step at most by filling in a single anticorner
and whose union is Yi. Take an increasing union of the sets Xi

j in the order
presented in Figure 2.15.

Figure 2.15: Take an increasing union in this order.

If Zj is the jth set that we hit, let Z̃j =
⋃
i≤j Zj and clearly Z0 = X and

Zj \ Zj−1 consists of at most a single cell filled into an anticorner of Zj−1 and

also Z
def
=
⋃

N Z̃j =
⋃

N Yi. So Z is an upper bound for all Yi and Z ∈ F . Finally
we apply Zorn’s lemma to get a maximal element M ∈ F , which we claim is
closed. Since M is written as a countable chain on increasing sets starting with
X which differ by at most 1 cell added to a corner, we know that M must be
in the closure of X. Hence M = X.

Corollary 2.3.33. The closure of a connected set is connected.

Proof. This is a consequence of the previous lemma.

Theorem 2.3.34. If X is convex, then X is closed.

Proof. By Lemma 2.3.26, it is sufficient to show that half planes are closed, but
this is obvious, since clearly you can’t have an anticorner in a half plane.

Definition 2.3.35. If X ⊆ M , then let X̃ denote the intersection of all half
planes containing X.
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Lemma 2.3.36. If X ⊆M , then X̃ is closed.

Proof. By Lemma 2.3.27 and Lemma 2.3.26 we know that X̃ is an intersection
of closed sets and is hence closed.

Corollary 2.3.37. If X ⊆M then X ⊆ X̃.

Lemma 2.3.38. If X is connected and closed then X is simply connected.

Proof. We will use a similar argument to that found in [4]. Suppose X is
not simply connected Consider all of the components of M \ X. Let S be a
component which does not include any boundary cells. By Lemmas 2.3.23 and
2.3.19 we know that S must contain at least three corners (vi, xi) (using Will’s
notation). The two cells adjacent to xi must be in X since (vi, xi) are corners,
but the cell across from xi must be in M \X since if the cell were in X, then X
would contain an anticorner, which would contradict the fact that X is closed.
Thus we can form an adjacency multigraph A for connected components of
M \X by having each component be a vertex and connecting to vertices iff they
have corners which are diagonally opposite to each other at the same vertex.
By Lemma 2.3.19 and Lemma 2.3.23, we know that each component of M \X
which does not intersect the boundary has at least three edges connected to
it. Now pick an interior component A0 of M \ X arbitrarily. We now we will
define a path inductively in A which extends in both directions from A0. Since
each interior component has degree at least 2, we know that if our path ends in
an interior vertex, we can always extend farther in that direction. If we get a
cycle, then we know X is disconnected (by applying the Jordan Curve theorem).
There are four possibilities:

1. the path forms a cycle,

2. the path extends indefinitely in both directions,

3. the path extends indefinitely in one direction, but reaches the boundary
in the other,

4. the path reaches the boundary in both directions.

In all cases, we get that X is disconnected and hence there can be no
connected components of M \X which don’t intersect the boundary.

We now diverge from the treatment of closed and compact sets that is found
in [4] and introduce some new lemmas and results.

Definition 2.3.39. Let x = x0, x1, . . . , xn = y be a path of adjacent cells in the
medial graph such that no cell is repeated. Let p0, . . . , pn be arbitrary points
such that pi ∈ x◦i (the interior of xi) for all i. Let γ : [0, 1]→ C be a curve such
that the following conditions are satisfied:

1. γ(k/n) = pk for k = 0, . . . , n,
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2. γ[k/n, (k + 1)/n] ⊆ intxk ∪ xk+1

3. γ is piecewise smooth.

4. γ does not intersect itself.

Then we will call γ a continuous curve associated with the path
x0, . . . , xn.

Lemma 2.3.40 (Filling Lemma). Let X ⊆ M be a closed connected set. Let
x1, x2 be two cells on the same side of g and let y1 = x1, y2, . . . , yn = x2 be a
path of adjacent cells from x1 to x2 which lies entirely on the same side of g as
x1 and x2. Then there is a region R of medial cells which is bounded by g and
the path y1, . . . , yn and R consists of a finite union of simple connected regions
and furthermore R ⊆ X. In particular all of the cells along g between x1 and
x2 are in X.

Proof. Let γ : [0, 1] →
⋃
i yi be a continuous curve associated with the medial

path y1, . . . , yn. Extend γ to get a function γ̂ : [−1, 2] such that

1. γ̂(t) = γ(t) for t ∈ [0, 1];

2. γ̂(t) ∈ y1 for t ∈ [−1, 0];

3. γ̂(t) ∈ yn for t ∈ [1, 2];

4. γ̂(−1) ∈ g ∩ y1 and γ̂(2) ∈ g ∩ yn

5. γ̂ has no self intersections.

6. γ̂ intersects the geodesic g at exactly two locations.

Under these assumptions we can extend and reparametrize γ̂ to a function
γ̃ that is a Jordan curve by letting γ̃ traverse the geodesic arc between γ̂(−1)
and γ̂(2). We will assume that γ̃ is parametrized on the interval [0, 1]. We
summarize in Figure 2.16.

Thus R exists as stated by noting that R is just the set of medial cells in
M \ X which are in the region bounded by γ̃. It may not be true that R is
connected, but it is sufficient to show that the connected component closest to
x1 (along g) is in X, so without loss of generality we may assume that x2 is
the first element of the path y1, y2, . . . , yn other than x1 which touches g. Let
c1, c2, . . . , cm denote the cells between x1 and x2 along g such that x1 = c1
and x2 = cm. Without loss of generality we may assume that {c2, . . . , cm−1} ∩
{y1, . . . , yn} is empty, i.e. that cm is the closest cell to x1 in {y2, . . . , yn} which
is along g and in the same direction as x2. Our goal is to show that R is empty.
We draw a picture to summarize the situation in Figure 2.17.

We first show that R is connected. Let R denote the set of connected com-
ponents of R. Define an adjacency graph A on R by setting two components
adjacent if they share a degenerate corner. By Lemma 2.3.19 each component
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Figure 2.16: The curve γ̃.

Figure 2.17: The cells c1, · · · , cm and R. Then entire white region bounded by
the grey loop and g is R.

of R has at least 3 corners. Since by assumption there is at most one compo-
nent which has cells on g, and the geodesic segment which borders R must be
connected (since all of the cells in the path y1, . . . , yn are on one side of g), we
know at most two cells from the component along g can correspond to corners
along g, and that all other components have no corners along g. Hence at least
one must correspond to an actual to either an anticorner of X or a degenerate
corner of R. But X has no anticorners, and hence each connected component of
S must have a degenerate corner with another connected component of S, and
hence A is connected. But furthermore, we know that at most one connected
component can have cells which are adjacent to g, and hence every vertex of
A except for possibly a single vertex has valence 3 or greater. By forming a
path in A by starting at the component along g and travelling in any manner
such that we don’t backtrack, we must eventually form a loop, thus forming a
disconnection of X, a contradiction. Hence R must be empty.

43



Lemma 2.3.41. Suppose X is a closed connected subset of M , then X̃ = X.

Proof. We will show that there are no cells in X̃ \X which are adjacent to X.

Since X̃ is connected and contains X, this would imply that X̃ = X. We use
the previous lemma. Suppose that c ∈ X̃ \X is adjacent to X. We will show
that c ∈ X. Let c be adjacent to x0 ∈ X and let g denote the geodesic that
travels between c and x0. Since c ∈ X̃, there must be some medial cell y in X
that is on the same side of g as c. Since X is connected there is a path z1, . . . , zn
of adjacent cells in X such that z1 = x and zn = y. Let k denote the last index
such that all zi are on the same side of g as x for all i = 1, . . . , k. Notice that
zk+1 is on the same side of g as c. We note that the path z1, . . . , zk is a loop
only on one side of a geodesic with z1 and zk along g. We summarize with the
situation in Figure 2.18

Figure 2.18: The situation: cells y1, . . . , yk, yk+1 and c.

Thus we are in a position to apply Lemma 2.3.40, and hence we know that
all the cells along g between z1 and zk on the same side of g as the path zi must
be in X. But then since zk+1 is on the opposite side of g, and is adjacent to zk,
which is adjacent to a cell x′ in X which is diagonally across from zk+1 (which
is guaranteed to be in X by the filling lemma), we know that the fourth cell
adjacent to zk+1 and x′ is in X. By induction, all of the cells along g on the
same side as zk+1 which are between zk+1 and c must be in X. Hence c must
be in X, so we are done.

Corollary 2.3.42. If X is connected, then X = X̃.

Proof. We have that X̃ ⊇ X since X̃ is closed and contains X. On the other

hand, we have by the previous lemma that X̃ ⊆ X̃ = X and hence combining
these two results yields the desired equality.
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2.4 An Important Computation

Lemma 2.4.1. If X and Y are subsets of M then we have X ∪Y ⊆ X ∪ Y and

X̃ ∪ Ỹ ⊆ X̃ ∪ Y .

Proof. Left to reader.

Lemma 2.4.2. Let g be a geodesic and let X1 consist of all of the boundary
cells in the medial graph to the left of B(g) and let X2 consist of all of the
boundary cells to the right of B(g). Then X1 ∪X2 = U(g).

Proof. Clearly X̃1 ∪X2 ⊆ U(g) since U(g) is a half plane which contains both
X1 and X2. Note by Lemma 2.3.42 that since X1 and X2 are closed we have
X1 = X̃1 and X2 = X̃2. Let R = X1 ∪X2 ∪B(g) and consider S = M \R. By
Lemma 2.3.19 and Corollary 2.3.23 we know that each component of S has at
least three corners. Now we observe that by the Filling lemma we know that the
component of g which is not adjacent to any cells in X1 ∪X2 is connected. Now
if S0 is the component of S which is adjacent to this connected arc of g, then by
the previous lemmas we know that S0 has at least three corners, and at most
two of them can be adjacent to g. The third corner cannot be an anticorner
of X1 ∪X2 since X1 ∪X2 is closed. Hence the diagonal cell must be another
component of S, which must have at least three corners. Furthermore, every
component of S other than S0 must have at least three corners, all of which
must be degenerate corners. Form an adjacency graph A on the components of
S other than S0 and note that any loop or infinite path in A will create portion
of X1 ∪X2 which cannot be connected to the boundary with a path of adjacent
cells in X1 ∪X2. Hence S must be empty, so X1 ∪X2 = M \B(g).

2.5 Extending Consistent Functions

We will now reference some work done by Will Johnson in [4] that will carry
over essentially without change to the infinite case. These initial theorems and
definitions are essentially identical to what is presented in [4].

Definition 2.5.1. Let X ⊆ M . Let a be a cell in the medial graph. Then
if X ′ = X ∪ {a} we say that X ′ is a simple extension of X if a and three
corners in X meet at an anticorner of X. We say X ′ is a nice simple extension
if a touches exactly one anticorner of X (i.e. is adjacent to exactly two cells in
X). If X ′′ is obtained from X by a series of simple extensions then X ′′ is an
extension of X. If X ′′ is obtained by a sequence of simple nice extensions, then
X ′′ is a nice extension of X.

Theorem 2.5.2 ([4]). Let M be a finite critical medial graph and let X ⊆ M
be convex such that X ∩ ∂M 6= ∅. Then there is some set of cells S ⊆ ∂M \X
such that the entire medial graph is a nice extension of X ∪ S.

Another result of Will Johnson’s work that we get trivially is that
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Remark 2.5.3. If c is a cell in ∂M \ X which is adjacent to X, then we can
pick S in Theorem 2.5.2 such that c ∈ S.

We leave it to the reader to verify the last statement, but it follows trivially.
We wish to apply Theorem 2.5.2 to sets of the form B(g) for geodesics in a medial
graph. Though the theorem seems like it should obviously carry over in some
form, we will provide justification, and then leave some of the details to the
reader. The idea is that if X = U(g) for some geodesic g, then we want to be
able to a single cell a from ∂M which borders X so that X ∪ {a} is a simple
extension of X, but the theorem doesn’t quite apply. To make it apply, we will
construct a new medial graph, M ′, which has B(g) embedded so that

1. all geodesics in B(g) are geodesics in M ′;

2. the geodesic g is a geodesic in M ′

3. M ′ \B(g) is a closed and connected set of cells

4. M ′ is a critical medial graph.

If the above four conditions are satisfied, then we can just apply 2.5.2 to see
that all M is a simple extension of X = U(g) since any simple extensions of a
superset of X in M corresponds to a simple extension of a superset of M ′ \B(g)
in the obvious fashion.

We now need to construct such a medial graph M ′. Thus turns out to
actually be really easy. First, conformally map B(g) (as a closed subset of C)
onto the closed unit disc. This is possible via the Riemann Mapping Theorem
(which ensures that such a conformal map exists between the interiors of those
regions) and Catheodory’s Theorem (which states that since the boundaries
of both regions are Jordan curves, the conformal map shown to exist by the
Riemann mapping theorem extends continuously to the boundary). Now smooth
each of the geodesics near the boundary so that if g is a geodesic then (if we
view g as a function from [0, 1] to B(g) (reparametrizing if necessary)) then
limt→1− g

′(t) and limt→0+ g′(t) both exist. We can do this by simply replacing
g with a linear function sufficiently close to the boundary such that we don’t
get any additional intersections of regions. Now let z1 and z2 be the two points
on ∂D which correspond to the points of intersection of g and R in our original
medial graph and let R1 and R2 denote the two arcs of of ∂D between z1 and z2.
Without loss of generality let R1 denote the arc corresponding to the geodesic
g. Extend two rays segments from z1 and z2 radially. Call these line segments
`1 and `2. Now extend each geodesic which intersects R1 along a straight line
corresponding to the limit of its derivative as it approaches R1. Now using a
basic compactness argument, we can pick a ρ > 1 such that none of the extended
geodesics or `1 or `2 intersect in the closed ball of radius ρ. Let x1 and x2 denote
two points along `1 and `2 of norm ρ and let R̃ denote the circular arc ρR1. Let
H be the region bounded by R2, the two line segments [z1, x1], [z2, x2] and the

arc R̃. Clearly the extended geodesics will divide H into regions, which can be
interpreted as medial graph cells for a medial graph M ′ in the obvious way. If
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so desired we can map the region H to the disc and then smooth the geodesics
at the boundary as before. This procedure is summarized in Figure 2.19

Figure 2.19: An outline of the method of extending B(g) so that B(g) is the
complement of a convex subset containing a connected subset of the boundary
of a critical circular planar medial graph.

Obviously the medial graph M ′ satisfies the stated properties. Using The-
orem 2.5.2 and the above observations, we get that:

Theorem 2.5.4. If M is an critical half planar graph and X = U(g), then
there is a finite set of boundary cells S ⊆ ∂M such that M is a simple extension
of X ∪ S. Furthermore, if c ∈ B(g) ∩ ∂M and c borders g, then we can pick S
so that c ∈ S.

2.6 Recovery

We are now nearly complete with most of our technical work and we need only
to prove some basic facts which will allow for recovery. We first will show how
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to recover boundary spikes and boundary-to-boundary edges, which will turn
out to be sufficient.

2.6.1 Recovering Boundary Spikes

A boundary spike is a pair of vertices (v∂ , vint ) such that v∂ ∈ ∂G and vint ∈
intG and there is an edge between v∂ and vint but there are no other edges con-
nected to v∂ . Throughout we assume that boundary spikes are never boundary-
to-boundary edges, i.e. every boundary spike consists of a boundary vertex
connected to exactly one interior vertex and no other boundary vertices.

Given an electrical network Γ with a boundary spike, we can form the
network Γ0 where we remove the given boundary spike. There is an natural
map from Γ0 into Γ which maps a vertex in Γ0 to the corresponding vertex in
Γ. We will call this map α : Γ0 → Γ. We have a simple but important lemma:

Lemma 2.6.1. Let Γ be an infinite electrical network with a boundary spike
(v∂ , vint ) and let Γ0 be the electrical network corresponding to contracting

(v∂ , vint ). Let φ ∈ Z(Γ). If φ ∈ M(Γ) then φ0
def
= φ ◦ α ∈ M(Γ0). If φ ∈ H(Γ)

and φ0 ∈M(Γ) then φ ∈M(Γ).

Proof. Let W be the subset of Z(Γ) consisting of functions which are constant
on the boundary of Γ and let W0 be the subset of Z(Γ0) consisting of functions
which are constant on the boundary of Γ0. Notice that there is an obvious
embedding of W0 into W by sending a function u which takes value c on the
boundary of Γ0 to the function which is u on Imα and takes value c on v∂ . If
u ∈W0 let ũ denote the element of W as described.

Now to proceed with the proof of the lemma, suppose that φ ∈M(Γ) = W⊥,
then we wish to show that φ0 ∈W⊥0 . But to do this, we just note that if u ∈W0

then ũ ∈W and hence

(φ0, u)Z(Γ0) =
∑

V (G)\{v∂}×V (G)\{v∂}

γvv′(φ0(v)− φ0(v′))(u(v)− u(v′))

= 2γv∂vint (φ(v∂)− vint )(ũ(v∂)− ũ(vint ))

+
∑

V (G)\{v∂}×V (G)\{v∂}

γvv′(φ(v)− φ(v
′))(u(v)− u(v′))

= (φ, ũ)Z(Γ)

so that φ0 ∈W⊥0 . Now to prove the other direction, suppose that φ0 ∈W⊥0 .
Let u ∈W , without loss of generality, assume that u is 0 on ∂G. Let u0 denote
u◦α. Note that u = ũ0 +χvint

u(vint ) where χvint
denotes the indicator function

on the set {vint }. Hence

(u, φ)Z(Γ) = (ũ0 + χvint
u(vint ), φ)Z(Γ)

= (ũ0, φ)Z(Γ) + (χvint
u(vint ), φ)Z(Γ).
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By the previous computation, we know that (ũ0, φ)Z(Γ) = (u0, φ0)Z(Γ0)

which is zero by assumption. On the other hand, we know that (χvint u(vint ), φ)Z(Γ)

is zero since it is exactly the current entering the vertex vint and φ ∈ H(Γ).
Hence φ ∈W⊥ = M(Γ) so we are done.

Lemma 2.6.2. Given the minimal Dirichlet-to-Neumann map ΛM (Γ) and a
boundary spike with given conductance γv∂vint , we can find the minimal Dirichlet-
to-Neumann map ΛM (Γ0) for the network Γ0 with the boundary spike con-
tracted.

Proof. Let G0 denote the graph of Γ0 (the contracted network) and let φ :

∂G0 → R be a function such that there exists a φ̃ : V (G0)→ R of finite power

such that φ = φ̂|∂G0 . Now define
ˆ̃
φ to be φ̃ on V (G0) and define

ˆ̃
φ to be the

unique γ-harmonic extension of φ̃ to the boundary spike. Clearly this exists

and is unique. Furthermore,
ˆ̃
φ is also clearly finite power. By Lemma 2.6.1,

we know that
ˆ̃
φ is of minimal power for its boundary voltages. We should note

that φ : ∂G0 → R and ΛM (G) uniquely determines
ˆ̃
φ(v∂) since

ΛM (G)(
ˆ̃
φ|∂G)(v∂) = γv∂vint

(φ(vint )− ˆ̃
φ(v∂)),

and γv∂vint
is nonzero so we can just solve for

ˆ̃
φ(v∂) in terms of known quantities.

By γ-harmonicity we know that

ΛM (G0)(φ)(vint ) = ΛM (G)(
ˆ̃
φ|∂G).

Furthermore, ΛM (G)(
ˆ̃
φ|∂G)(v) = ΛM (G0)(φ)(v) for v ∈ ∂G such that v 6= vint .

Hence ΛM (G) and the conductivity γvint v∂ uniquely determine ΛM (G0).

Lemma 2.6.3. Given a critical half planar electrical network Γ with a bound-
ary spike (v∂ , vint ), the minimal Dirichlet-to-Neumann map ΛM uniquely de-
termines the conductivity γv∂vint

.

Proof. Let x∂ denote the medial graph cell corresponding to v∂ . We note that
x∂ is a geodesic triangle, i.e. there are two geodesics which bound x∂ and the
other edge of x∂ is an interval of R. By Lemma 2.3.9 we know that x∂ ∈ B(g)
for one of the two geodesics which is borders x∂ . We will progressively define the
function (φ, ψ) where φ is a voltage function on Γ and ψ is a covoltage function
(on Γ†) such that

ψ = (ΦΓ† ◦DΓ)(φ).

Firstly define φ and ψ to be 0 on ∂M ∩U(g). By Lemma 2.4.2 we know that φ
and ψ are zero on U(g). By Lemma 2.5.4, we know that we can pick an S ⊆ ∂M
such that x∂ ∈ S and M is a simple extension of X ∪ S. Define φ to be 1 on
x∂ and specify φ and ψ arbitrarily on the other cells of S. Just as in the finite
case, we know that under these conditions we can extend φ and ψ to be defined
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on all of V and V † such that φ is γ-harmonic on intG and ψ is γ†-harmonic on
intG† and

ψ = (ΦΓ† ◦DΓ)(φ)

(we leave these details to the reader, but it is identical to the finite case, so
the interested reader can read [4]). Thus we can find a γ-harmonic function
φ : V → R such that φ(v∂) = 1 and φ(v) = 0 for v ∈ U(g) ∩ ∂M . Further we
have that if ψ = (ΦΓ† ◦DΓ)(φ) then ψ is (up to a constant) 0 on U(g)∩∂M . By
Lemma 2.4.2 we know that any functions φ and ψ which satisfy those conditions
will also satisfy φ(vint ) = 0. We note that φ is of finite power since it is finitely
supported, and furthermore, since it is finitely supported, by Lemma 1.5.2 we
know that φ ∈M(Γ). Thus we can find a φ and ψ satisfying the above conditions
such that (using the notation from the previous chapter) that

(∂ ◦ ΛM )(φ|∂G) = ψ|∂G.

Now we are in the same situation as in the finite case, and we know that

ΛM (φ|∂G)(v∂) = γvint v∂ · (1− 0)

which immediately gives us γvint v∂ .

2.6.2 Recovering Boundary-to-Boundary Edges

We recover boundary-to-boundary edges in a very similar fashion to how we
recovered boundary spikes. We define a boundary-to-boundary edge to be an
edge v1v2 ∈ E(G) such that γv1v2

6= 0 and v1, v2 ∈ ∂G. We note that if
we remove a boundary-to-boundary edge, we may be left with a disconnected
graph, but that doesn’t matter, since we can define medial and dual graphs for
disconnected graphs. Similarly all of the results about the minimal boundary
value maps were not dependent on the graph being connected.

Lemma 2.6.4. Let Γ be an electrical network with boundary-to-boundary edge
v1v2 and suppose Γ0 is the network resulting from removing this edge. There
is an obvious map between the vertices in these networks, which we will call
β : V (G0) → V (G) which is essentially just the identity. Let φ ∈ Z(Γ). Then
φ ∈M(Γ) iff (φ ◦ β) ∈M(Γ0).

Proof. Suppose φ ∈ M(Γ) = W (G)⊥ and let u ∈ W (G0). Notice that β is a
bijection and β(W (G)) = W (G0). Hence (φ, u ◦ β−1)Z(Γ) = 0 by assumption.
Denote u ◦ β−1 by ũ. We simply note that since ũ(v1) = ũ(v2) since v1 and v2
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are boundary vertices. Hence

(φ, ũ)Z(Γ) =
∑

V (G)×V (G)

γvv′(φ(v)− φ(v′))(ũ(v)− ũ(v′))

=
∑

(V (G)×V (G))\{v1v2,v2v1}

γvv′(φ(v)− φ(v′))(ũ(v)− ũ(v′))

=
∑

V (G0)×V (G0)

γvv′((φ ◦ β)(v)− (φ ◦ β)(v′))(u(v)− u(v′))

= (φ ◦ β, u)Z(Γ0)

and hence (φ ◦ β, u)Z(Γ0) = 0. Hence φ ◦ β ∈ Z(Γ0). The other direction
follows by reversing the order we presented the above inequalities.

Lemma 2.6.5. Given the minimal Dirichlet-to-Neumann map ΛM (Γ) and a
boundary-to-boundary edge v1v2 with conductance γv1v2

, we can find the mini-
mal Dirichlet-to-Neumann map ΛM (Γ0) for the connected network Γ0 resulting
from the removal of the edge v1v2.

Proof. By Lemma 2.6.4 we know that the minimal voltage functions on Γ0 are
the same as they are on Γ, and hence given valid boundary data, the Dirichlet
solutions are the same. If φ is a voltage function, by definition, the current
leaving a boundary vertex v is given by the formula

ΛM (Γ)(φ)(v) =
∑
v′∼Gv

γvv′(φ(v)− φ(v′)).

If v is not v1 or v2 this is unchanged and hence ΛM (Γ)(φ)(v) = ΛM (Γ0)(v). For
v1 and v2, we just compute immediately that

ΛM (Γ)(φ)(v1) =
∑

v′∼Gv1

γv1v′(φ(v1)− φ(v′))

= γv1v2(φ(v1)− φ(v2)) +
∑

v′∼G0
v1

γv1v′(φ(v1)− φ(v′))

= ΛM (Γ0)(v1) + γv1v2(φ(v1)− φ(v2)),

which gives us a formula for ΛM (Γ0)(v1). Using an identical argument we can
find a nearly identical formula for ΛM (Γ0)(v2).

Lemma 2.6.6. Given a critical half planar electrical network Γ with a boundary-
to-boundary edge v1v2, the map ΛM (Γ) uniquely determines γv1v2 .

Proof. The proof is essentially the same as in the case of boundary spikes be-
cause now we are recovering a boundary spike of the dual graph. We leave
the details to the reader, but essentially we find a geodesic g which crosses the
boundary spike in the dual graph and such that the boundary vertex of this
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boundary spike is in B(g). We find boundary values which will guarantee that
the interior vertex of this boundary spike will have covoltage zero but such that
the boundary vertex will have covoltage 1. We leave the details to the reader
since they are identical to before.

2.6.3 Recovering the Entire Graph

Definition 2.6.7. We will define a triangular geodesic region to be a
bounded subset of the medial graph whose boundary consists of two exactly
geodesic segments and one connected subset of R. We will define a geodesic
triangle to be a triangular geodesic region R such that there are no geodesics
which cross the boundary of R.

Lemma 2.6.8. Let g be a geodesic in a critical half planar medial graph and
suppose that g intersects at least one other geodesic. Then there is a geodesic
triangle (possibly with other geodesics inside of it) in B(g).

Proof. The proof is essentially the same as in [1]. Let xg` and xgr be the left and
right endpoints of g. Let g′ be the geodesic which crosses g closest to x`. One
of the endpoints of g′ must be in B(g) since the graph is critical. This produces
a triangular region t. Let g′′ be the geodesic which crosses g′ closest to this
region. Notice that g′′ cannot intersect g′ again and g′′ cannot intersect g at
any point in t since we assumed that g′ was the geodesic which was closest to
x. This yields a geodesic triangle t′ ⊆ t ⊆ B(g). We summarize in Figure 2.20.

Figure 2.20: A decreasing sequence of triangular geodesic regions in B(g).

We repeat this process to get a descending sequence of triangular geodesic
regions which must eventually terminate with a geodesic triangle since B(g) is
a finite subset of the medial graph. We note that we don’t claim the resulting
geodesic triangle is empty.

Lemma 2.6.9. Removal of a boundary-to-boundary edge, a boundary spike,
or removing a finite connected component all preserve criticality.

Proof. All operations obviously perserve half-planarity. The first two operations
preserve criticality since the change in the medial corresponds to just merging
two cells as shown in Figure 2.21.
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Figure 2.21: The result on the medial graph from a boundary spike contraction.
The result of a boundary-to-boundary edge deletion is the same since the two
processes are dual to each other.

And hence we will never have two geodesics if they didn’t cross before
removing a boundary spike or boundary to boundary edge. If there is a finite
connected component of the graph, then one there must be a dual cell which
has multiple boundary components on R and hence deleting the finite subset
will just correspond to deleting some geodesics, as shown in the below picture.
We leave the details to the reader, but the claim is clear.

Lemma 2.6.10. Let G be a critical half planar graph and let e be any edge in
G. Then e can be removed by sequentially removing boundary spikes, boundary-
to-boundary edges or deleting finite connected components.

Proof. Let g be a geodesic which crosses the edge e. we will sequentially remove
every edge with a vertex in B(g) (corresponding to removing a cell in the medial
graph). So we proceed by induction, showing that we can always remove cells
in B(g) or merge cells in B(g) without altering any of the rest of the medial
graph. To do this, we note that since e crosses g, there must by another geodesic
which crosses e and hence crosses g. Thus we can apply Lemma 2.6.8 to find a
geodesic triangle t in B(g). If t is empty, then we can simply perform remove
a boundary spike or boundary to boundary edge, which results in just merging
two cells as shown in Figure 2.21.

As shown in Lemma 2.6.9 this preserves criticality. If t is nonempty then
since there are no geodesics which cross t, we know that the vertices of G in
t cannot be connected to any of the vertices in M \ t, and hence the vertices
in t correspond to a connected component so we can remove them. As shown
in Lemma 2.6.9, we know that this preserves criticality and deleting the primal
vertices in t correspond to removing the geodesics inside of t which don’t cross
t. Eventually we must get that no geodesics cross g, which implies that we have
removed e.

Theorem 2.6.11. Given a critical half planar network graphG and the minimal
Dirichlet-to-Neumann map ΛM for some electrical network Γ with graph G, we
can recover all of the conductivities of Γ.
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Proof. Let e be an edge in G. By Lemma 2.6.10 we can remove e from the
graph by sequentially removing boundary spikes, boundary-to-boundary edges
and finite connected components. Given a boundary spike, or a boundary-to-
boundary edge we can recover the conductivity by Lemmas 2.6.3 and 2.6.6 we
can recover the conductivity along it. By Lemmas 2.6.2 and 2.6.5 we can find the
Dirichlet to Neumann maps of the resulting graphs. Given a finite connected
component of G, the Dirichlet-to-Neumann map for the finite component is
just the restriction of the minimal Dirichlet-to-Neumann map for the infinite
graph, and since the finite component must obvious be critical circular planar
we can recover all of the conductivities of the edges in the finite component.
The minimal Dirichlet-to-Neumann map for the other components will just be
the restriction of the Dirichlet-to-Neumann map restricted to the complement
of the finite component. Repeating this process as per Lemma 2.6.10, we will
recover the entire graph.

We note that there there is an obvious analogue for Lemmas 2.6.2, and
2.6.5 for the minimal Neumann-to-Dirichlet map HM . Similarly, the results
from Lemmas 2.6.3 and 2.6.6 hold for ΛM replaced with HM since the proof
basically carries over without change. Thus we have the proposition, the details
are left the reader, but are essentially just as above:

Proposition 2.6.12. Given a critical half planar network graph G and the
minimal Neumann-to-Dirichlet map HM for some electrical network Γ with
graph G, we can recover all of the conductivities of Γ.
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